

COMPLETEVIEW API

V7.3.244

2

Table of Contents
Introduction ... 4

Developer Audience .. 4

Dependencies .. 4

CVServerControl API .. 4

Using the CVServerControl API .. 5

Server Interaction Types .. 5

Threading Model ... 5

CVServerControl API Reference ... 6

ICVServerControl ... 6

ICVServerControl2 ... 21

ICVServerControl3 ... 26

ICVServerControl4 ... 48

ICVServerControl5 ... 49

ICVServerControl6 ... 49

ICVServerControl7 ... 54

ICVServerControl8 ... 55

ICVServerControl9 ... 58

_ICVServerEvents ... 60

_ICVServerEvents2 ... 73

_ICVServerEvents3 ... 75

CVServerControl API Enumerations ... 78

CVServerControl API Structures... 85

CVClientControl API ... 91

Using the CVClientControl API ... 91

Method Contexts ... 91

Threading Model ... 94

CVClientControl API Reference .. 95

ICVVideo .. 95

ICVVideo2 .. 118

ICVVideo3 .. 127

ICVVideo4 .. 143

ICVVideo5 .. 143

ICVVideo6 .. 144

3

ICVVideo7 .. 146

_ICVVideoEvents .. 147

CVCientControl API Enumerations ... 152

CVClientControl API Structures.. 157

Additional Resources ... 160

4

Introduction
The CompleteView APIs provide the means for third-party developers to write applications that administer and

monitor CompleteView servers, and/or present streaming video (and audio) from such servers. There are two

separate APIs for interfacing with CompleteView servers:

• The CVServerControl API, which consists of a set of COM interfaces for administering and monitoring

CompleteView servers.

• The CVClientControl API, which consists of a set of COM interfaces for streaming video from

CompleteView servers.

The CVServerControl API is a COM control that can be instantiated to establish a connection to a CompleteView

server. The control presents an abstraction allowing programmatic third-party control over the server. The

cameras administered by the server are accessible through this abstraction, but only to a limited degree. The

primary focus is on the server itself.

The centerpiece of the CVClientControl API is an ActiveX control named CVVideo. An instance of the CVVideo

control presents a (logical) connection to a CompleteView server-camera pair. The control provides an abstraction

allowing programmatic third-party use and control of the camera. The other cameras administered by the server

are accessible through this abstraction, but only to a limited degree.

There is a small amount of overlap in the functionalities exposed by these APIs (and their respective ActiveX

controls). This overlap is more an accident of history than anything else.

Developer Audience
Developers using the CompleteView APIs must be generally familiar with the CompleteView family of products and

their capabilities. They should also be familiar with COM interfaces in general and writing COM client software in

particular.

The CompleteView APIs can be used by a variety of applications, from scripts embedded in HTML pages to full-

fledged applications written in C++, C#, or Visual Basic.

The CompleteView API installer includes the COM APIs and client/server sample applications for 64-bit OS. The

sample applications exemplify the use of the COM APIs to connect/monitor CompleteView servers.

Dependencies

CVClientControl and CVServerControl have runtime dependencies on Resources.Common.dll that is required for

localization support. The libraries must be included within the language subfolders (.\en\Resources.Common.dll,

.\es\Resources.Common.dll, and .\zh-CN\Resources.Common.dll) in the same directory as the CVClientControl and

CVServerControl. In addition, CVClientControl has dependency on fisheye dewarping DLLs. Please refer to the

sample applications for usage details. All the dependencies are included in the API installer.

CVServerControl API
The CVServerControl API provides a set of interfaces that allow applications to administer and monitor

CompleteView servers. There are two primary interfaces:

5

• ICVServerControl, which represents an abstract connection to a CompleteView server. This interface is

implemented by the CVServerControl and invoked by the application.

• _ICVServerEvents, through which the CVServerControl may provide the application with asynchronous

notifications of significant server events. This interface is (optionally) implemented by the application; it

is invoked by the CVServerControl.

A secondary interface, ICVServerControl2, extends ICVServerControl. ICVServerControl2 can be thought of as a

newer version of ICVServerControl.

A third interface, ICVServerControl3, extends ICVServerControl2. It adds new interface methods and functionality.

A fourth interface, ICVServerControl4, extends ICVServerControl3. It adds new methods and functionality.

Using the CVServerControl API

Server Interaction Types

With respect to exchanging messages with the server, there is wide variety of behaviors exhibited by the methods

in the CVServerControl API. The following table summarizes the server interaction types:

Server Interaction Description

Always/Best-Effort The method always conducts communication with the server (assuming a
connection), but does not wait for the server’s response. It is “best effort” in the
sense that the client application is given no indication of the success or timing of
the server’s execution of the method.

Always/Synchronous The method always conducts communication with the server (assuming a
connection), and waits for the server’s response.

Never The method involves no communication with the server.

Never/Best-Effort The method involves no communications with the server, and only provides the
requested information if the server has already provided it.

Possibly/Synchronous The method conducts communication with the server (and waits for the
response), but only if the information requested has not already been received
and cached locally.

Always/Asynchronous The method always conducts communication with the server (assuming a
connection), but does not wait for a response, instead creating an asynchronous
handler to await server response when available.

Threading Model

CVServerControl is an apartment threaded COM server, and so each instance must be used on only a single thread,

and that thread must have a Windows message loop.

Several methods in the CVServerControl API perform a synchronous message exchange with a CompleteView

server. These methods are specially designed with an embedded Windows message loop and a visible (modal)

dialog box, providing some visual user feedback and preventing “lockup” of the UI during lengthy operations. For

many applications this usage pattern will be adequate. However, some application developers may want to

consider putting the CVServerControl instance on a thread other than the main user interface thread. (As

mentioned above, this second thread must have a message pump.)

6

CVServerControl API Reference

ICVServerControl

Application developers should not implement this interface. The CVServerControl provides this functionality.

Note: In C++, all properties are retrieved by a method that is named by prepending get_ to the name of the

property. For example, if the property’s name is Password, then get_Password retrieves the property. Writable

properties are set by a method that is named by prepending put_ to the name of the property, e.g. put_Password.

The ICVServerControl interface inherits from the IDispatch interface, and has additional properties and methods,

summarized in the following tables and subsequently described in detail.

Property Description

Password The user password when connecting to a server.

Server Host name or IP address of the server.

UserName The user name when connecting to a server.

Method Description Server Interaction

Connect Establishes a connection to a server. Always/Best-Effort

Disconnect Tears down the current server connection. Always/Synchronous

FlushCamera Flushes the current video clip for a particular camera. Always/Best-Effort

GetCameraInfo Gets information about a camera. Possibly/Synchronous

GetNumberOfCameras Gets the number of cameras. Possibly/Synchronous

GetNumberOfUsers Gets the number of users. Possibly/Synchronous

GetServerName Gets the friendly name of the server. Never/Best-Effort

GetServerVersion Gets server version information. Never/Best-Effort

GetStorageInfo Gets server storage information. Always/Synchronous

GetUserName Gets a particular user name. Possibly/Synchronous

GotoPreset Moves a particular camera to a preset. Always/Best-Effort

IsServerConnected Indicates whether currently connected to a server. Never

SetCameraOverlay Sets the overlay characteristics of a particular camera. Always/Best-Effort

SetServerTime Sets the server’s system time. Always/Best-Effort

StartAlarm Starts alarm recording with a particular camera. Always/Best-Effort

StartAlarmReason Starts alarm recording with a particular camera (with a
textual description/justification).

Always/Best-Effort

StartMotion Starts motion recording with a particular camera. Always/Best-Effort

StartMotionReason Starts motion recording with a particular camera (with a
textual description/justification).

Always/Best-Effort

StopAlarm Stops alarm recording with a particular camera. Always/Best-Effort

StopMotion Stops motion recording with a particular camera. Always/Best-Effort

TimedAlarm Starts alarm recording with a particular camera for a
particular duration.

Always/Best-Effort

TimedAlarmReason Starts alarm recording with a particular camera for a
particular duration (with a textual
description/justification).

Always/Best-Effort

TimedMotion Starts motion recording with a particular camera for a
particular duration.

Always/Best-Effort

TimedMotionReason Starts motion recording with a particular camera for a
particular duration (with a textual
description/justification).

Always/Best-Effort

http://msdn.microsoft.com/en-us/library/windows/desktop/ms221608(v=vs.85).aspx

7

ICVServerControl::Connect

The Connect method starts the process of establishing a connection to the server identified by the Server property,

using the credentials represented by the UserName and Password properties.

Syntax (C++)

HRESULT Connect(

);

Parameters

The Connect method has no parameters.

Return Value

The return value is S_OK.

Remarks

The connection is established asynchronously. The application may poll for the connection status by calling the

IsServerConnected method.

If the CVServerControl was previously connected to a server, that connection is torn down, followed by initiation of

a new connection.

ICVServerControl::Disconnect

The Disconnect method takes down the current connection to the server.

Syntax (C++)

HRESULT Disconnect(

);

Parameters

The Disconnect method has no parameters.

Return Value

The return value is S_OK.

Remarks

Disconnect takes down the current connection to the server, if one has been established. If a connection has been

initiated (via Connect) but not completed, then that connection attempt is aborted.

ICVServerControl::FlushCamera

The FlushCamera method instructs the server to flush the current video clip and start recording a new video clip,

for a particular camera.

Syntax (C++)

HRESULT FlushCamera(

 [in] SHORT Camera

);

8

Parameters

Camera [in]

Camera identifier (one-based index).

Return Value

The return value is S_OK if the appropriate command is successfully sent to the server, S_FAIL if no server is

connected or a problem is detected with the connection.

Remarks

FlushCamera is a best-effort method, providing no indication of whether or when the server executes the

command.

ICVServerControl::GetCameraInfo

The GetCameraInfo method returns information about a particular camera.

Syntax (C++)

HRESULT GetCameraInfo(

 [in] SHORT CameraID,

 [out] BSTR *CameraName

 [out] UINT *CameraStatus

);

Parameters

CameraID [in]

Camera identifier (one-based index).

CameraName [out]

Receives the camera name, or is unset. See the remarks below.

CameraStatus [out]

Receives the camera status vector, or is unset. See the remarks below.

Return Value

The return value is S_OK.

Remarks

The camera name and status, if reported by this method, are not necessarily current. (One might reasonably

expect the camera name to remain static, but the status is more likely to vary over time.) To guarantee up-to-date

information, the client application should first call the PurgeCache method.

The camera status is a bit field with the following status bits:

Bit Position Meaning when Set

0 (least significant) Scheduled recording is active.

1 External alarm detected, external alarm recording is active.

2 Motion recording is active.

3 Motion has been detected.

4 Camera is a PTZ camera.

5 Prealarm recording is active.

6 Not connected to server (video acquisition failure).

9

7 Tour is enabled.

8 Camera is inactive/stopped (no attempt by server to acquire video), though it may be
enabled.

9 Camera supports audio.

10 Camera is an IP camera.

11 Camera is an ACTI model.

13 Camera is transitioning to or from the stopped state. Bit 8 is the intended next state (0
= started, 1 = stopped) but the camera is not there yet.

14 Camera is set to use Digital PTZ.

15 Recording failure.

16 Camera preset and/or preset name changed.

The CameraName and Status output parameters will be unset if there is no connection to the server, or a problem

is experienced with the connection, or if the camera identifier is invalid.

GetCameraInfo may perform a synchronous message exchange with the currently connected server. During this

exchange Windows messages will continue to be dispatched.

ICVServerControl::GetNumberOfCameras

The GetNumberOfCameras method returns the number of cameras with which the currently connected server is

configured.

Syntax (C++)

HRESULT GetNumberOfCameras(

 [out] SHORT *Count

);

Parameters

Count [out]

Receives the camera count, or is unset. See the remarks below.

Return Value

The return value is S_OK.

Remarks

The camera count, if any is reported by this method, is not necessarily current. If up-to-date information is

required, the client application should first call the PurgeCache method.

The Count output parameter will be unset if there is no connection to a server, or a problem is experienced with

the connection.

GetNumberOfCameras may perform a synchronous message exchange with the currently connected server.

During this exchange Windows messages will continue to be dispatched.

ICVServerControl::GetNumberOfUsers

The GetNumberOfUsers method returns the number of users with which the currently connected server is

configured.

10

Syntax (C++)

HRESULT GetNumberOfUsers(

 [out] SHORT *Count

);

Parameters

Count [out]

Receives the user count, or is unset. See the remarks below.

Return Value

The return value is S_OK.

Remarks

The user count, if any is reported by this method, is not necessarily current. If up-to-date information is required,

the client application should first call the PurgeCache method.

The Count output parameter will be unset if there is no connection to a server, or a problem is experienced with

the connection.

GetNumberOfUsers may perform a synchronous message exchange with the currently connected server. During

this exchange Windows messages will continue to be dispatched.

ICVServerControl::GetServerName

The GetServerName method returns the friendly name of the currently connected server.

Syntax (C++)

HRESULT GetServerName(

 [out] BSTR *ServerName

);

Parameters

ServerName [out]

Receives the friendly name of the currently connected server, or is set to the empty string. See the remarks

below.

Return Value

The return value is S_OK.

Remarks

GetServerName provides the friendly server name if the CVServerControl is connected to a server and that server

has provided its friendly name. Otherwise the returned string is empty.

ICVServerControl::GetServerVersion

The GetServerVersion method retrieves version information about the currently connected server.

Syntax (C++)

HRESULT GetServerVersion(

 [out] LONG *Major,

 [out] LONG *Minor,

 [out] LONG *Release,

11

 [out] LONG *Build

);

Parameters

Major [out]

Receives the major version number, or is left unset. See the remarks below.

Minor [out]

Receives the minor version number, or is left unset. See the remarks below.

Release [out]

Receives the release number, or is left unset. See the remarks below.

Build [out]

Receives the build number, or is left unset. See the remarks below.

Return Value

The return value is S_OK if version information is returned, S_FALSE otherwise.

Remarks

GetServerVersion provides version information if the CVServerControl is connected to a server and the server has

provided its version information.

ICVServerControl::GetStorageInfo

The GetStorageInfo method retrieves up-to-date storage information from the currently connected server.

Syntax (C++)

HRESULT GetStorageInfo(

 [out] LONG *UsedSpace,

 [out] LONG *AvailableSpace

);

Parameters

UsedSpace [out]

Receives the used space in megabytes, summed over all volumes on the server, or is set to zero if an error

occurs.

AvailableSpace [out]

Receives the available space in megabytes, summed over all volumes on the server, or is set to zero if an error

occurs.

Return Value

The return value is S_OK if the storage information is successfully retrieved from the server, S_FALSE otherwise.

Remarks

GetStorageInfo normally conducts a synchronous message exchange with the currently connected server. During

this exchange, Windows messages will continue to be dispatched.

ICVServerControl::GetUserName

The GetUserName method retrieves a particular user name from the currently connected server.

12

Syntax (C++)

HRESULT GetUserName(

 [in] SHORT UserID,

 [out] BSTR *UserName

);

Parameters

UserID [in]

User identifier (one-based index).

UserName [out]

Receives the user name, or is set to the empty string. See the remarks below.

Return Value

The return value is S_OK.

Remarks

The user name, if any is reported by this method, is not necessarily current. To ensure up-to-date information, the

client application should first call the PurgeCache method.

The UserName output parameter will be set to the empty string if there is no connection to a server, a problem

occurs with the connection, or the user identifier is invalid.

GetUserName may perform a synchronous message exchange with the currently connected server. During this

exchange Windows messages will continue to be dispatched.

ICVServerControl::GotoPreset

The GotoPreset method instructs the currently connected server to direct a particular camera to a particular preset

location.

Syntax (C++)

HRESULT GotoPreset(

 [in] SHORT CameraID,

 [in] SHORT Preset

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Preset [in]

Camera preset number.

Return Value

The return value is S_OK if the command is successfully sent to the server, S_FALSE if not connected to a server or

a problem occurs with the connection.

13

Remarks

GotoPreset only works for mechanical PTZ cameras and not on cameras using digital PTZ driver. This function is a

best-effort method providing no indication of whether or when the server actually executes the command.

ICVServerControl::IsServerConnected

The IsServerConnected method returns an indication of whether the CVServerControl is connected to a server.

Syntax (C++)

HRESULT IsServerConnected(

 [out] VARIANT_BOOL *Connected

);

Parameters

Connected [out]

Receives a Boolean indicating whether the CVServerControl is connected to a server.

Return Value

The return value is S_OK.

ICVServerControl::Password

The Password property determines the user password that is used on the next connection to a server. Changing

this property has no effect on the current connection (if any).

Syntax (C++)

HRESULT get_Password(

 [out] BSTR *pVal

);

HRESULT put_Password(

 [in] BSTR newVal

);

Parameters

pVal [out]

Receives the current value of the property.

newVal [in]

Password to use in the next connection to a server.

Return Value

The return value is S_OK.

ICVServerControl::Server

The Server property determines the identity of the server to which connection is attempted when the Connect

method is called. This property should be a host name, or an IP address in dotted-quad format, or the string

localhost. Changing this property has no effect on the current connection (if any).

Syntax (C++)

HRESULT get_Server(

 [out] BSTR *pVal

14

);

HRESULT put_Server(

 [in] BSTR newVal

);

Parameters

pVal [out]

Receives the current value of the Server property.

newVal [in]

Identifies the next server to which a connection should be attempted (on call of Connect).

Return Value

The return value is S_OK.

ICVServerControl::SetCameraOverlay

The SetCameraOverlay method instructs the currently connected sever to change the overlay parameters for a

particular camera.

Syntax (C++)

HRESULT SetCameraOverlay(

 [in] SHORT CameraID,

 [in] BSTR OverlayText,

 [in] VARIANT_BOOL ShowTimeStamp,

 [in] VARIANT_BOOL ShowCameraName

);

Parameters

CameraID [in]

Camera identifier (one-based index).

OverlayText [in]

Overlay text. A null value or an empty string clears the overlay text.

ShowTimeStamp [in]

A Boolean that specifies whether to include timestamps in the overlay.

ShowCameraName [in]

A Boolean that specifies whether to include the camera name in the overlay.

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

SetCameraOverlay is a best-effort method providing no indication of whether or when the server actually executes

the command.

ICVServerControl::SetServerTime

The SetServerTime method instructs the currently connected server to change its system time.

15

Syntax (C++)

HRESULT SetServerTime(

 [in] DATE Time

 [in] VARIANT_BOOL UTC

);

Parameters

Time [in]

The target server date/time.

UTC [in]

A Boolean specifying whether the Time parameter is in UTC.

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurred with the connection.

Remarks

SetServerTime is a best-effort method providing no indication of whether or when the server actually executes the

command.

ICVServerControl::StartAlarm

The StartAlarm method instructs the currently connected server to begin alarm recording with a specific camera.

Syntax (C++)

HRESULT StartAlarm(

 [in] SHORT CameraID

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Return Value

The return value is S_OK.

Remarks

StartAlarm is a best-effort method providing no indication of whether or when the server actually executes the

command.

The StartAlarmReason method performs the same function as StartAlarm but allows the client application to

attach a textual description/justification to the recording event.

ICVServerControl::StartAlarmReason

The StartAlarmReason method instructs the currently connected server to begin alarm recording with a specific

camera. Unlike the StartAlarm method, it allows the client application to provide a textual description/justification

for the recording.

16

Syntax (C++)

HRESULT StartAlarmReason(

 [in] SHORT CameraID,

 [in] BSTR Reason

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Reason [in]

Description/justification for the recording.

Return Value

The return value is S_OK.

Remarks

StartAlarmReason is a best-effort method providing no indication of whether or when the server actually executes

the command.

ICVServerControl::StartMotion

The StartMotion method instructs the currently connected server to begin motion recording with a specific

camera.

Syntax (C++)

HRESULT StartMotion(

 [in] SHORT CameraID

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Return Value

The return value is S_OK.

Remarks

StartMotion is a best-effort method providing no indication of whether or when the server actually executes the

command.

The StartMotionReason method performs the same function as StartMotion but allows the client application to

attach a textual description/justification to the recording event.

ICVServerControl::StartMotionReason

The StartMotionReason method instructs the currently connected server to begin motion recording with a specific

camera. Unlike the StartMotion method, the client application can provide a textual description/justification for

the recording.

17

Syntax (C++)

HRESULT StartMotionReason(

 [in] SHORT CameraID,

 [in] BSTR Reason

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Reason [in]

Description/justification for the recording.

Return Value

The return value is S_OK.

Remarks

StartMotionReason is a best-effort method providing no indication of whether or when the server actually

executes the command.

ICVServerControl::StopAlarm

The StopAlarm method instructs the server to stop alarm recording with a particular camera.

Syntax (C++)

HRESULT StopAlarm(

 [in] SHORT CameraID

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Return Value

The return value is S_OK.

Remarks

StopAlarm is a best-effort method providing no indication of whether or when the server actually executes the

command.

ICVServerControl::StopMotion

The StopMotion method instructs the server to stop motion recording with a particular camera.

Syntax (C++)

HRESULT StopMotion(

 [in] SHORT CameraID

);

18

Parameters

CameraID [in]

Camera identifier (one-based index).

Return Value

The return value is S_OK.

Remarks

StopMotion is a best-effort method providing no indication of whether or when the server actually executes the

command.

ICVServerControl::TimedAlarm

The TimedAlarm method instructs the server to begin alarm recording with a specific duration.

Syntax (C++)

HRESULT TimedAlarm(

 [in] SHORT CameraID

 [in] SHORT Seconds

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Seconds [in]

Length of time to record (in seconds). This value overrides the value configured on the server for alarm

recording. The value is clamped to a minimum of one second.

Return Value

The return value is S_OK.

Remarks

TimedAlarm is a best-effort method providing no indication of whether or when the server actually executes the

command.

The TimedAlarmReason method provides the same functionality, but also allows the client application to attach a

textual description/justification to the recording.

ICVServerControl::TimedAlarmReason

The TimedAlarmReason method instructs the currently connected server to begin alarm recording with a specific

duration. Unlike the TimedAlarm method, it allows the client application to specify a textual

description/justification for the recording.

Syntax (C++)

HRESULT TimedAlarmReason(

 [in] SHORT CameraID,

 [in] SHORT Seconds,

 [in] BSTR Reason

);

19

Parameters

CameraID [in]

Camera identifier (one-based index).

Seconds [in]

Length of time to record (in seconds). This value overrides the value configured on the server for alarm

recording. The value is clamped to a minimum of one second.

Reason [in]

Description/justification for the recording.

Return Value

The return value is S_OK.

Remarks

TimedAlarmReason is a best-effort method providing no indication of whether or when the server actually

executes the command.

ICVServerControl::TimedMotion

The TimedMotion method instructs the server to begin motion recording with a specific duration.

Syntax (C++)

HRESULT TimedMotion(

 [in] SHORT CameraID

 [in] SHORT Seconds

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Seconds [in]

Length of time to record (in seconds). This value overrides the value configured on the server for motion

recording. The value is clamped to a minimum of one second.

Return Value

The return value is S_OK.

Remarks

TimedMotion is a best-effort method providing no indication of whether or when the server actually executes the

command.

The TimedMotionReason method provides the same functionality, but also allows the client application to attach a

textual description/justification to the recording.

ICVServerControl::TimedMotionReason

The TimedMotionReason method instructs the currently connected server to begin motion recording with a

specific duration. Unlike the TimedMotion method, it allows the client application to specify a textual

description/justification for the recording.

20

Syntax (C++)

HRESULT TimedMotionReason(

 [in] SHORT CameraID,

 [in] SHORT Seconds,

 [in] BSTR Reason

);

Parameters

CameraID [in]

Camera identifier (one-based index).

Seconds [in]

Length of time to record (in seconds). This value overrides the value configured on the server for motion

recording. The value is clamped to a minimum of one second.

Reason [in]

Description/justification to attach to the recording.

Return Value

The return value is S_OK.

Remarks

TimedMotionReason is a best-effort method providing no indication of whether or when the server actually

executes the command.

ICVServerControl::UserName

The UserName property determines the user name that is used on the next connection to a server. Changing this

property has no effect on the current connection (if any).

Syntax (C++)

HRESULT get_UserName(

 [out] BSTR *pVal

);

HRESULT put_UserName(

 [in] BSTR newVal

);

Parameters

pVal [out]

Receives the current value of the property.

newVal [in]

User name to use in the next connection to a server.

Return Value

The return value is S_OK.

21

ICVServerControl2

The ICVServerControl2 interface inherits from the ICVServerControl interface. ICVServerControl2 offers additional

methods, summarized in the following table and described in detail in the text that follows.

Method Description Server Interaction

GetCameraPermissions Gets the access permissions for a particular (user, camera)
pair.

Possibly/Synchronous

PurgeCache Clears the local cache of camera and user information. Never

SearchVideo Gets information about the time intervals for which video
exists.

Always/Synchronous

TestCameraPermissions Tests a camera permissions bitmap for a particular
permissions bit.

Never

SetClientName Sets client’s name for the underlying TCP connection Always/Best-Effort

SetClientVersion Sets client’s version for the underlying TCP connection Always/Best-Effort

ICVServerControl2::GetCameraPermissions

The GetCameraPermissions method retrieves the access permissions for a particular user and camera.

Syntax (C++)

HRESULT GetCameraPermissions(

 [in] SHORT UserID,

 [in] SHORT CameraID,

 [out] LONG *Permissions

);

Parameters

UserID [in]

User identifier (one-based index).

CameraID [in]

Camera identifier (one-based index).

Permissions [out]

Receives the permissions bitmap for the (user, camera) pair. This bitmap is a bitwise-OR combination of the

permissions flags enumerated by CameraPermission.

Return Value

The return value is S_OK.

Remarks

The client application may test the individual bits of the permissions bitmap through the usual language-specific

means, or may use the TestCameraPermissions method.

GetCameraPermissions may conduct a synchronous message exchange with the currently connected server.

During this exchange, Windows messages will continue to be dispatched.

ICVServerControl2::PurgeCache

The PurgeCache method clears the CVServerControl’s locally cached information about cameras and users.

22

Syntax (C++)

HRESULT PurgeCache(

);

Parameters

The PurgeCache method has no parameters.

Return Value

The return value is S_OK.

ICVServerControl2::SearchVideo

The SearchVideo method returns an indication of when video exists from particular cameras during a particular

time interval.

Syntax (C++)

HRESULT SearchVideo(

 [in] VARIANT Cameras,

 [in] DATE Start,

 [in] DATE End,

 [out] VARIANT *ClipStart,

 [out] VARIANT *ClipEnd,

 [out] VARIANT_BOOL *Result

);

Parameters

Cameras [in]

A safe array of SHORT (VT_ARRAY | VT_I2), or a single SHORT (VT_I2), designating the camera(s) to include in

the search. An empty array instructs the server to include all cameras in the search.

Start [in]

A date/time value giving the beginning of the temporal range to search, expressed in client local time.

End [in]

A data/time value giving the end of the temporal range to search, expressed in client local time.

ClipStart [out]

Receives a safe array of DATE (VT_ARRAY | VT_DATE). This array contains the start timestamps for each “clip”

found by the search. The ith element of the array contains the start time of a clip, whose end time is the ith

element of ClipEnd.

ClipEnd [out]

Receives a safe array of DATE (VT_ARRAY | VT_DATE). This array contains the end timestamps for each “clip”

found by the search. The ith element of the array contains the end time of the clip whose start time is the ith

element of ClipStart.

23

Result [out]

Receives a Boolean indicating whether the search was successful. Reasons for failure include not being

connected to a server, or a problem with the connection. Note that a search returning no clips (i.e. returning

empty ClipStart and ClipEnd arrays) may still have been a successful search.

Return Value

The return value is E_INVALIDARG if the input Cameras variant is of the wrong type. Otherwise the return value is

S_OK.

Remarks

SearchVideo returns time intervals indicating the presence of video. More precisely, it returns a sequence of n

time intervals [s1, t1], [s2, t2], … [sn, tn] such that

𝑠𝑖 ≤ 𝑡𝑖 for each 𝑖 ∈ {1, … 𝑛}, i.e. each interval is non-empty;

𝑡𝑖 < 𝑠𝑖+1 for each 𝑖 ∈ {1, … , 𝑛 − 1}, i.e. the intervals are sorted and have non-empty spacing;

𝑠1 ≥ 𝑆𝑡𝑎𝑟𝑡 and 𝑡𝑛 ≤ 𝐸𝑛𝑑; i.e. the results are limited to the specified range;

There exists video from at least one of the designated cameras for all 𝑡 ∈ ⋃[𝑠𝑖 , 𝑡𝑖]; and

𝑛

𝑖=1

If 𝑡 ∈ [𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑] ∩ ~ ⋃[𝑠𝑖 , 𝑡𝑖]

𝑛

𝑖=1

, then none of the designated cameras have video for time 𝑡.

All times returned via ClipStart and ClipEnd are in client local time.

SearchVideo normally performs a synchronous message exchange with the server. During this exchange Windows

messages will continue to be dispatched.

ICVServerControl2::TestCameraPermissions

The TestCameraPermissions method tests a camera permissions bitmap for a particular type of access permission.

Syntax (C++)

HRESULT TestCameraPermissions(

 [in] LONG Permissions,

 [in] CameraPermission Permission,

 [out] VARIANT_BOOL *Authorized

);

Parameters

Permissions [in]

A camera permissions bitmap returned by GetCameraPermissions.

Permission [in]

The specific permission to test.

Authorized [out]

Receives a Boolean indicating whether the specific permission is set in the permissions bitmap.

24

Return Value

The return value is S_OK.

Remarks

TestCameraPermissions is the recommended way to test a permissions bitmap in client applications that do not

have programmatic access to the CameraPermission enumeration.

ICVServerControl2::SetClientName

The SetClientName method sets the client for the underlying TCP connection. Setting this value helps identify client

connections originate from CVServerControl.

Syntax (C++)

HRESULT SetClientName(

 [in] BSTR ClientName

);

Parameters

ClientName [in]

String identifying the client connecting through CVServerControl interface.

Return Value

The return value is S_OK.

ICVServerControl2::SetClientVersion

The SetClientVersion method sets the version information of the client for the underlying TCP connection.

Syntax (C++)

HRESULT SetClientVersion(

 [in] BSTR ClientVersion

);

Parameters

ClientVersion [in]

String containing the version of the client.

Return Value

The return value is S_OK.

ICVServerControl2::SetTimeout

The SetTimeout method sets timeout value used when attempting to connect to a given host.

Syntax (C++)

HRESULT SetTimeout(

 [in] UINT64 Timeout

);

25

Parameters

Timeout [in]

Timeout in milliseconds to be used on a connection attempt.

Return Value

The return value is S_OK.

Remarks

Typical timeout values could range from 10 to 60 seconds. If not set, connections will timeout based on Windows

default socket timeout setting.

26

ICVServerControl3

The ICVServerControl3 interface inherits from the ICVServerControl2 interface. ICVServerControl3 offers additional

properties and methods, summarized in the following tables and described in detail in the text that follows.

Property Description

FlushOldEvents Set to true to receive all events logged since the server started. Set to false to
receive events logged only from when the connection to server has been
established. By default, this property is set to false.

HeartbeatInterval Recording service heartbeat interval.

Method Description Server Interaction

SearchVideoWithInfo Retrieves video clip information based on
camera indexes.

Possibly/Synchronous

GetServerTimeZone Retrieves the server time zone standard name. Always/Synchronous

GetCameraTimeZone Retrieves the camera time zone standard name. Always/Synchronous

AddSmartSearchZone Adds a smart search zone for given coordinates. Never

StartSmartSearch Begins the smart search action. Always/Asynchronous

StopSmartSearch Stops the smart search action. Always/Best-Effort

SaveSnapshot Saves a snapshot to a file. Always/Synchronous

GetCameraDetails Retrieves the camera details for specified
camera index.

Always/Synchronous

GetSnapshot Retrieves a live snapshot with the supplied
width and height.

Always/Synchronous

EnableServerInfo Allows the client to setup ongoing request for
the supplied server information.

Always/Best-Effort

DisableServerInfo Allows the client to disable a request for the
supplied server information.

Always/Best-Effort

GetSnapshotsAsync Retrieves snapshots for the requested list of
cameras with the supplied width, height and
quality.

Always/Asynchronous

StopSnapshotsAsynch Ends the asynchronous snapshot request if
there is one occurring.

Always/Best-Effort

GetServerPlatform Retrieves the OS platform for the currently
connected server.

Always/Synchronous

GetEventDaysAsync Request a list of the days in the event log that
contain events

Always/Asynchronous

GetVideoDaysAsync Request a list of the days that contain video. Always/Asynchronous

GetLogEventsAsync Request a list of log events for the specified
time period.

Always/Asynchronous

StopLogEventsAsync Stops a currently started request for log events. Always/Best-Effort

DeleteVideoFilesAsync Delete video files for a given camera, volume
and date combination.

Always/Asynchronous

StartRecordingServiceAsync Starts the video recording service of the
connected server.

Always/Asynchronous

StopRecordingServiceAsync Stops the video recording service of the
connected server.

Always/Asynchronous

RestartRecordingServiceAsync Restarts the video recording service of the
connected server.

Always/Asynchronous

FilterCameraEventsByType Attempts to set subscription filtering by event
type preference.

Always/Best-Effort

27

GetNumberOfIoDevices Gets the number of IO devices that have been
configured on the server.

Always/Synchronous

GetIoDetailByGuid Gets information on an IO device identified
using the device’s GUID.

Always/Synchronous

GetIoDetailByIndex Gets information on an IO device identified
using the device’s index.

Always/Synchronous

TriggerOutputByGuid Trigger an output on an IO device, using the
GUID to identify the IO device.

Always/Best-Effort

TriggerOutputByIndex Trigger an output on an IO device, using the
device index to identify it.

Always/Best-Effort

GetFeatureKeys Get information about feature keys available in
server’s license.

Always/Synchronous

ExportToServerQueue Pushes a video clip to the Recording Server
export queue.

Always/Synchronous

StartServiceListener Starts the broadcast Recording Server service
listener.

Always/Synchronous

StopServiceListener Stops the broadcast Recording Server service
listener.

Always/Synchronous

ResetRecordingServiceAsync Resets a Recording Server to the default
configuration.

Always/Asynchronous

SecureConnect Connects to a server via Secure TCP connection.
By default, the underlying class will use
“localhost", "admin" and "" for Server,
UserName and Password properties if they
were not set.

Always/Synchronous

ICVServerControl3:: SearchVideoWithInfo

The SearchVideoWithInfo method retrieves video clip information based on the camera indexes supplied. This is a

synchronous operation.

Syntax (C++)

HRESULT SearchVideoWithInfo (

 [in] VARIANT Cameras,

 [in] DATE Start,

 [in] DATE End,

 [in] BSTR TimeZoneStandardName,

 [in] RecordingCategory Category,

 [in] VARIANT Volumes,

 [out] VARIANT* ResultCameras,

 [out] VARIANT* ResultCatergories,

 [out] VARIANT* ResultStartDateTimes,

 [out] VARIANT* ResultEndDateTimes,

 [out] VARIANT* ResultStartActDateTimes,

 [out] VARIANT* ResultEndActDateTimes,

 [out] VARIANT* ResultDescriptions,

 [out] VARIANT* ResultClipSizes,

 [out] VARIANT* Reserved1,

 [out] VARIANT* Reserved2,

 [out] VARIANT* Reserved3,

 [out, retval] VARIANT_BOOL *Result

28

);

Parameters

Cameras [in]

List of camera indexes for video search. Empty list indicates all cameras

Start [in]

Search start time.

End [in]

 Search end time.

TimeZoneStandardName [in]

 Time zone standard name for search operation (see Remarks).

Category [in]

 Recording category to filter search results. See RecordingCategory enumeration.

Volumes [in]

 List of volumes for video search.

ResultCameras [out]

 Result list of camera indexes pertaining to video clips found.

ResultCategories [out]

 Result list of video category pertaining to video clips found.

ResultStartDateTimes [out]

 Result list of start times pertaining to result video clips found.

ResultEndDateTimes [out]

 Result list of end times pertaining to result video clips found.

ResultStartActDateTimes [out]

 Result list of actual start times pertaining to result video clips found.

ResultEndActDateTimes [out]

 Result list of actual end times pertaining to result video clips found.

ResultDescriptions [out]

 Result list of descriptions pertaining to result video clips found.

ResultClipSizes [out]

 Result list of clip sizes pertaining to result video clips found.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

29

Return Value

The return value is S_OK.

Remarks

It is strongly recommended to use a language-invariant time zone name, rather than a localized time zone name,

for the TimeZoneStandardName input value.

ICVServerControl3:: GetServerTimeZone

The GetServerTimeZone method retrieves the server time zone standard name for the currently connected server.

This is a synchronous operation.

Syntax (C++)

HRESULT GetServerTimeZone(

 [out] LONG *OffsetSeconds,

 [out] BSTR *Name,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

OffsetSeconds [out]

Server time zone offset (from UTC), in seconds.

Name [out]

Server time zone standard name (see Remarks). e.g. Pacific Standard Time

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

The value of the Name output will be in the Windows display language in use on the Recording Server system.

When the Recording Server runs as a Windows Service, the language for the SYSTEM account is used.

ICVServerControl3:: GetCameraTimeZone

The GetCameraTimeZone method retrieves the camera time zone standard name for the requested camera. This is

a synchronous operation.

Syntax (C++)

HRESULT GetCameraTimeZone (

 [in] INT Camera,

 [out] BSTR *Name,

 [out, retval] VARIANT_BOOL *Result

);

30

Parameters

Camera [in]

Camera identifier (one-based index).

Name [out]

Camera time zone standard name (see Remarks). e.g. Pacific Standard Time

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

The value of the Name output may be localized, depending on various Windows system settings in effect when the

camera was configured.

ICVServerControl3:: AddSmartSearchZone

The AddSmartSearchZone method adds a smart search zone with the supplied user parameters. This is a

synchronous operation.

Syntax (C++)

HRESULT AddSmartSearchZone (

[in] INT Left,

[in] INT Top,

[in] INT Right,

[in] INT Bottom,

[in] INT Sensitivity

);

Parameters

Left [in]

X-coordinate of the upper-left corner of a rectangle

Top [in]

Y-coordinate of the upper-left corner of a rectangle

Right [in]

X-coordinate of the lower-right corner of a rectangle

Bottom [in]

Y-coordinate of the lower-left corner of a rectangle

Sensitivity [in]

Rectangular region and sensitivity value: 0 (low) <= sensitivity <= 100 (high)

31

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: StartSmartSearch

The StartSmartSearch method begins the smart search action with the supplied user parameters. This is an

asynchronous operation. The callback method handlers to monitor the progress of the search are

OnSmartSearchResult and OnSmartSearchProgress.

Syntax (C++)

HRESULT StartSmartSearch (

 [in] INT Camera,

 [in] DATE Start,

 [in] DATE End,

 [in] BSTR TimeZoneStandardName,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Camera [in]

Camera identifier (one-based index).

Start [in]

Query start date and time in specified time zone.

End [in]

Query end date and time in specified time zone.

TimeZoneStandardName [in]

Camera time zone standard name (see Remarks). e.g. Pacific Standard Time

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

It is strongly recommended to use a language-invariant time zone name, rather than a localized time zone name,

for the TimeZoneStandardName input value.

ICVServerControl3:: StopSmartSearch

The StopSmartSearch method stops the smart search action. This is a synchronous operation. There is no

indication sent from the server as to the ultimate success of failure of this action.

32

Syntax (C++)

HRESULT StopSmartSearch (

);

Parameters

The StopSmartSearch method has no parameters.

Return Value

The return value is S_OK.

ICVServerControl3:: SaveSnapshot

The SaveSnapshot method saves a snapshot to a file with the supplied user parameters. This is a synchronous

operation. If width and height are not provided then the value of the original frame width and height will be

utilized.

Syntax (C++)

HRESULT SaveSnapshot (

 [in] BSTR Filename,

 [in] INT Camera,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Filename [in]

File to which the snapshot needs to be saved.

Camera [in]

Camera identifier (one-based index).

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

On failure the resultant codes are outlined in the following table:

Failure Code Description
E_INVALIDARG One or more arguments are invalid

E_ACCESSDENIED General access denied error

E_ABORT Operation aborted

E_FAIL Unspecified error

33

Return Value

The return value is S_OK.

ICVServerControl3:: GetCameraDetails

The GetCameraDetails method retrieves the camera details for specified camera index. This is a synchronous

operation.

Syntax (C++)

HRESULT GetCameraDetails (

 [in] INT Camera,

 [ref, in, out] CameraDetails* CameraDetails,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Camera [in]

Camera identifier (one-based index).

CameraDetails [in/out]

Pointer to camera details object, see CameraDetails. This must be passed in by API client.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: GetSnapshot

The GetSnapshot method retrieves a live snapshot with the supplied width and height. This is a synchronous

operation. If width and height are not provided then the value of the original frame width and height will be

utilized.

Syntax (C++)

HRESULT GetSnapshot (

 [in] INT Camera,

 [out] VARIANT* Buffer,

 [out] BSTR* Error,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [out, retval] VARIANT_BOOL *Result

);

34

Parameters

Camera [in]

Camera identifier (one-based index).

Buffer [out]

Buffer containing the requested snapshot.

Error [out]

Description of error if any error is returned from the Result.

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: EnableServerInfo

The EnableServerInfo method allows the client to setup ongoing requests for the supplied server information. This

is an asynchronous operation. The method handlers for the requested server information are

OnSystemStatsUpdate, OnVolumeInfoUpdate, OnLicenseInfoUpdate, OnCameraInfoUpdate,

OnConnectionInfoUpdate and OnStoragePoolInfoUpdate.

Syntax (C++)

HRESULT EnableServerInfo (

 [in]enum ServerInfoType InfoType,

 [in]UINT PollIntervalMs);

);

Parameters

InfoType [in]

ServerInfoType for which to poll the server.

PollIntervalMs [in]

Interval in milliseconds with which to poll the server for information.

Return Value

The return value is S_OK.

ICVServerControl3:: DisableServerInfo

The DisableServerInfo method allows the client to disable a request for the supplied server information.

35

Syntax (C++)

HRESULT DisableServerInfo (

 [in] enum ServerInfoType InfoType

);

Parameters

InfoType [in]

ServerInfoType for which to disable polling to the server.

Return Value

The return value is S_OK.

ICVServerControl3:: GetSnapshotsAsync

The GetSnapshotsAsync method retrieves snapshots for the requested list of cameras with the supplied width,

height and quality. This is an asynchronous operation. The method handler to identify retrieval completion is

OnSnapshotResult. If width and height are not provided then the value of the original frame width and height will

be utilized.

Syntax (C++)

HRESULT GetSnapshotsAsync (

 [in] VARIANT Cameras,

 [in, out] BSTR* Error,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [in, defaultvalue(100)] INT Quality,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Cameras [in]

List of camera indexes for snapshot retrieval. Empty list indicates all cameras

Error [out]

Description of error if any error is returned from the Result.

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Quality [in]

Snapshot quality. The range is 0 (worst quality) to 100 (best quality).

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

36

Return Value

The return value is S_OK.

ICVServerControl3:: StopSnapshotsAsync

The StopSnapshotsAsync method ends the asynchronous snapshot request if there is one occurring. This is a

synchronous operation.

Syntax (C++)

HRESULT StopSnapshotsAsync (

);

Parameters

The StopSnapshotsAsync method has no parameters.

Return Value

The return value is S_OK.

ICVServerControl3:: GetServerPlatform

The GetServerPlatform method retrieves the OS platform for the currently connected server. This is a synchronous

operation.

Syntax (C++)

HRESULT GetServerPlatform (

 [out] BSTR* Platform

);

Parameters

Platform [out]

Value indicating the platform of the server. i.e. “x64” or “x32”

Return Value

The return value is S_OK.

ICVServerControl3:: GetEventDaysAsync

The GetEventDaysAsync method requests a list of the days in the event log that contain events. This is an

asynchronous operation. The method handler to identify retrieval completion is OnEventDaysUpdate.

Syntax (C++)

HRESULT GetEventDaysAsync (

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

37

Return Value

The return value is S_OK.

ICVServerControl3:: GetVideoDaysAsync

The GetVideoDaysAsync method requests a list of the days that contain video. This is an asynchronous operation.

The method handler to identify retrieval completion is OnVideoDaysUpdate.

Syntax (C++)

HRESULT GetVideoDaysAsync (

 [in]VARIANT Cameras,

 [in]VARIANT Volumes,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Cameras [in]

List of camera indexes for video day retrieval. Empty list indicates all cameras.

Volumes [in]

List of volume indexes for video day retrieval.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: GetLogEventsAsync

The GetLogEventsAsync method requests a list of log events for the specified time period. This method requires

that at least one event type is requested. This is an asynchronous operation. The method handler to identify

retrieval completion is OnLogEventsResult.

Syntax (C++)

HRESULT GetLogEventsAsync (

 [in] DATE Start,

 [in] DATE End,

 [in] BSTR TimeZoneStandardName,

 [in] UINT MaxResults,

 [in] VARIANT_BOOL IncludeServerEvents,

 [in] VARIANT EventTypes,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

38

Parameters

Start [in]

Start time.

End [in]

End time.

TimeZoneStandardName [in]

String representing the standard timezone to use for this request (see Remarks). e.g. Pacific Standard

Time. If no time zone is supplied it will be assumed that the “Local” time zone is requested.

MaxResults [in]

Specifies the maximum number of events to return. A value of -1 specifies that there is no limit.

IncludeServerEvents [in]

Set to true to include server events.

EventTypes [in]

List of events to include. See EventType enumeration definition for a list of supported types.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

It is strongly recommended to use a language-invariant time zone name, rather than a localized time zone name,

for the TimeZoneStandardName input value.

ICVServerControl3:: StopLogEventsAsync

The StopLogEventsAsync method stops a running request for log events. This is a synchronous operation.

Syntax (C++)

HRESULT StopLogEventsAsync (

);

Parameters

The StopLogEventsAsync method has no parameters.

Return Value

The return value is S_OK.

ICVServerControl3:: DeleteVideoFilesAsync

The DeleteVideoFilesAsync method deletes video files for a given camera, volume and date combination. This is an

asynchronous operation. The method handler to identify completion is OnDeleteVideoFilesResult.

39

Syntax (C++)

HRESULT DeleteVideoFilesAsync (

 [in] INT CameraId,

 [in] INT VolumeId,

 [in] VARIANT Date,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

CameraId [in]

Camera identifier (one-based index). A value of -1 indicates all cameras.

VolumeId [in]

Volume identifier (one-based index). A value of -1 indicates all volumes.

Date [in]

Represented by a string of the type mm-dd-yyyy.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: StartRecordingServiceAsync

The StartRecordingServiceAsync starts the video recording service of the connected server. This is an asynchronous

operation. The callback method handler to identify completion is OnAdminServiceTaskResult.

Syntax (C++)

HRESULT StartRecordingServiceAsync (

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

40

ICVServerControl3:: StopRecordingServiceAsync

The StopRecordingServiceAsync stops the video recording service of the connected server. This is an asynchronous

operation. The method handler to identify completion is OnAdminServiceTaskResult.

Syntax (C++)

HRESULT StopRecordingServiceAsync (

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: RestartRecordingServiceAsync

The RestartRecordingServiceAsync restarts the video recording service of the connected server. This is an

asynchronous operation. The method handler to identify completion is OnAdminServiceTaskResult.

Syntax (C++)

HRESULT RestartRecordingServiceAsync (

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: FilterCameraEventsByType

The FilterCameraEventsByType accepts a list of EventTypes and attempts to set the camera event subscription

based on the requested types. If no filter is set after initial connection or anytime thereafter, then all events are in

the subscription. If an empty list is sent then the filter is reset to subscribe to all events.

Syntax (C++)

HRESULT FilterCameraEventsByType (

41

 [in] eventTypes,

 [out] BSTR* error,

 [out, retval] VARIANT_BOOL *result

);

Parameters

eventTypes [in]

List of event types. See EventTypes enumeration.

error [out]

Description of error if any error is returned from the Result.

result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: GetIoDetailByGuid

The GetIoDetailByGuid method retrieves I/O details for the specified I/O using the device’s GUID to uniquely

identify it. This is a synchronous operation.

Syntax (C++)

HRESULT GetIoDetailByGuid(

[in] GUID deviceGuid,

[ref, in, out] IoDetails* ioDetails,

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result

);

Parameters

deviceGuid [in]

I/O device identifier.

ioDetails [in/out]

Pointer to I/O details object, see IoDetails. This must be passed in by API client.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

42

ICVServerControl3:: GetIoDetailByIndex

The GetIoDetailByIndex method retrieves the I/O details for specified I/O device using the index to identify the

device. This is a synchronous operation.

Syntax (C++)

HRESULT GetIoDetailByIndex(

[in] INT ioIndex,

[ref, in, out] IoDetails* ioDetails,

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result

);

Parameters

ioIndex [in]

I/O device identifier.

ioDetails [in/out]

Pointer to I/O details object, see IoDetails. This must be passed in by API client.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl3:: TriggerOutputByGuid

The TriggerOutputByGuid method triggers or resets an output on an I/O device using the device’s GUID to uniquely

identify it. This is an asynchronous operation. If set is “true”, the output specified will be triggered. If it is “false”,

the output specified will be reset. Whether an output should be closed when triggered, or open when triggered, is

specified in the configuration and will be determined and processed by the server on receiving the command.

Syntax (C++)

HRESULT TriggerOutputByGuid (

[in] GUID deviceGuid,

[in] INT output,

VARIANT_BOOL set,

[out] BSTR* error);

Parameters

deviceGuid [in]

I/O device identifier.

output [in]

Output number to be triggered.

43

set [in]

True to set the output, and false to reset.

Error [out]

Description of error if any error is returned from the Result.

Return Value

The return value is S_OK.

ICVServerControl3:: TriggerOutputByIndex

The TriggerOutputByIndex method triggers or resets an output on an I/O device using the device’s index to

uniquely identify it. This is an asynchronous operation. If set is “true”, the output specified will be triggered. If it is

“false”, the output specified will be reset. Whether an output should be closed when triggered, or open when

triggered, is specified in the configuration and will be determined and processed by the server on receiving the

command.

Syntax (C++)

HRESULT TriggerOutputByIndex (

[in] INT deviceNumber,

[in] INT output,

VARIANT_BOOL set,

[out] BSTR* error);

Parameters

deviceNumber [in]

I/O device identifier.

output [in]

Output number to be triggered.

set [in]

True to set the output, and false to reset.

Error [out]

Description of error if any error is returned from the Result.

Return Value

The return value is S_OK.

ICVServerControl3:: GetNumberOfIoDevices

The GetNumberOfIoDevices retrieves the number of I/O devices configured on the server. This is a synchronous

operation.

Syntax (C++)

HRESULT GetNumberOfIoDevices (

[out] INT* count,

 BSTR *error

);

44

Parameters

count [out]

Number of I/O devices configured.

Error [out]

Description of error if any error is returned from the Result.

Return Value

The return value is S_OK.

ICVServerControl3:: GetFeatureKeys

The GetFeatureKeys method gets information about all available feature keys in the server license. This is a

synchronous operation.

Syntax (C++)

HRESULT GetFeatureKeys (

[out] VARIANT* keys,

[out] VARIANT* descriptions,

[out] VARIANT* quantities,

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result);

Parameters

keys [out]

List of feature keys as string.

descriptions [out]

List of descriptions of each feature key as string.

quantities [out]

List of quantity/feature information associated with each feature key as string.

error [out]

Description of error if any error is returned from the result.

Result [out]

Boolean value indicating success or failure.

Return Value

The return value is S_OK.

ICVServerControl3:: FlushOldEvents

The FlushOldEvents property can be set to true to enable receiving notifications of all events logged from the time

the server started. By default, this property is set to false and the client application is notified of events logged only

from the time connection to the server has been established. This property should be set before establishing

connection to the server with the Connect call. Changing this property has no effect on the current connection.

45

Syntax (C++)

HRESULT get_FlushOldEvents(

[out] VARIANT_BOOL* result);

HRESULT put_FlushOldEvents (

[in] VARIANT_BOOL enabled);

Parameters

result [out]

 Receives the current value of the property.

enabled [in]

 Specifies whether to flush events from server start (VARIANT_TRUE) or not (VARIANT_FALSE).

Return Value

The return value is S_OK.

ICVServerControl3:: ExportToServerQueue

The ExportToServerQueue method pushes a video clip to the Recording Server export queue. The Recording Server

must have an export volume configured. Video clips are queued on the Recording Server until the configured

export time, at which a process is triggered which begins writing the clips to the export volume.

This method is synchronous. It returns the result of pushing the video clip to the export queue. It does not return

any errors related to writing the video clip to the export volume.

Syntax (C++)

HRESULT ExportToServerQueue (

[in] QueueExportClipInfo clipInfo,

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result);

Parameters

clipInfo [in]

Video clip settings. See QueueExportClipInfo.

error [out]

 Description of error if any error is returned from the result.

result [out]

 Boolean value indicating success or failure.

Return Value

The return value is S_OK.

ICVServerControl3::StartServiceListener

The StartServiceListener method starts a broadcast listener to listen for Recording Server service started events.

The service endpoint port to listen on must match the service endpoint port configured on the Recording Server in

order to receive these broadcast messages.

This method is synchronous.

46

Syntax (C++)

HRESULT StartServiceListener (

[in] Int endpoint,

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result);

Parameters

endpoint [in]

Endpoint port to listen on.

error [out]

 Description of error if any error is returned from the result.

result [out]

 Boolean value indicating success or failure.

Return Value

The return value is S_OK.

ICVServerControl3::StopServiceListener

The StopServiceListener method stops the broadcast listener if it exists and has been started.

This method is asynchronous.

Syntax (C++)

HRESULT StopServiceListener (

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result);

Parameters

error [out]

 Description of error if any error is returned from the result.

result [out]

 Boolean value indicating success or failure.

Return Value

The return value is S_OK.

ICVServerControl3::HeartbeatInterval

The HeartbeatInterval property. This value is configured on the Recording Server. The default value is 30 seconds.

If this value is set to zero then no heartbeat will be sent out by the Recording Server.

Syntax (C++)

HRESULT get_HeartbeatInterval (

 [out] INT *heartbeatInterval

);

HRESULT put_HeartbeatInterval (

 [in] INT heartbeatInterval

47

);

ICVServerControl3::ResetRecordingServiceAsync

The ResetRecordingServiceAsync method resets the connected Recording Server to a clean install configuration.

This method signals to the AdminService to stop the Recording Server, backup all required configuration files, clean

those files and then start the Recording Server.

This method is asynchronous.

Syntax (C++)

HRESULT ResetRecordingServiceAsync (

[out] BSTR* error,

[out, retval] VARIANT_BOOL* result);

Parameters

error [out]

 Description of error if any error is returned from the result.

result [out]

 Boolean value indicating success or failure.

Return Value

The return value is S_OK.

ICVServerControl3::SecureConnect

The SecureCOnnect methods connects to a given server via a secure TCP connection. By default, the underlying
class will use "localhost", "admin" and "" for Server, UserName and
Password properties if they were not set.
This method is synchronous.

Syntax (C++)

HRESULT SecureConnect (void);

Parameters

None..

Return Value

The return value is S_OK.

48

ICVServerControl4

The ICVServerControl4 interface inherits from the ICVServerControl3 interface. ICVServerControl4 offers additional

properties and methods, summarized in the following tables and described in detail in the text that follows.

Property Description

TimeZoneKeyName Gets the time zone identifier. On a Windows machine, this corresponds to the
registry key identifying the time zone on the server system.

Method Description Server Interaction

EnableEventSubscription Allows for events subscription to be enabled or
disabled. By default, event subscription is enabled. If
connected this will also subscribe or unsubscribe from
events.

Possibly/Asynchronous

ICVServerControl4::EnableEventSubscription

The EnableEventSubscription methods when connected will subscribe to events if enabled is “true” and
unsubscribe from events if enabled is “false”. When the event subscription has been disabled Connect,
SecureConnect, and FilterCameraEventsByType to no longer subscribe to events. By default, event subscription is
enabled.

This method is asynchronous when connected.

Syntax (C++)

HRESULT EnableEventSubscription (

[in] VARIANT_BOOL enabled);

Parameters

enabled [in]

 Specifiec if the events subscription should be enabled.

Return Value

The return value is S_OK.

ICVServerControl4::TimeZoneKeyName

Read this property to get the name of the time zone in use on the server system when the connection to the server

was established. This value corresponds to the Windows registry key identifying the time zone.

Syntax (C++)

HRESULT get_TimeZoneKeyName (

 [out] BSTR *timeZoneKeyName

);

Parameters

timeZoneKeyName [out]

Receives the time zone name

Return Value

The return value is S_OK upon success.

49

ICVServerControl5

The ICVServerControl5 interface inherits from the ICVServerControl4 interface. ICVServerControl5 offers additional

properties and methods, summarized in the following tables and described in detail in the text that follows.

Method Description Server Interaction

SetAdminServiceLanguage Allows for language to be updated on the Admin
Service. By default, the language will be the system
language if supported. If selected language is
unavailable English will be used.

Possibly/Asynchronous

ICVServerControl5::SetAdminServiceLanguage

The SetAdminServiceLanguage method sets the current language for the Admin Service. When the Admin Service
is started the default language will use the current system language. If language is not supported English will be
used.

This method is asynchronous when connected.

Syntax (C++)

HRESULT SetAdminServiceLanguage (

[in] BSTR localeName, [out] BSTR* error);

Parameters

localeName [in]

 Specifiec if the locale that the Admin Service should use.

error [out]

 String describing any error that may be reported.

Return Value

The return value is S_OK.

ICVServerControl6

The ICVServerControl6 interface inherits from the ICVServerControl5 interface. ICVServerControl6 offers an

additional method, summarized in the following table and described in detail in the text that follows.

Method Description Server Interaction

GetServerInfo Retrieves a brief overview of the server information Always/Synchronous

SaveStreamSnapshot Saves a snapshot to a file using the supplied camera
ID and stream ID.

Always/Synchronous

GetStreamSnapshot Retrieves a live snapshot using the supplied camera
ID and stream ID.

Always/Synchronous

GetStreamSnapshotsAsync Retrieves snapshots for the requested list of cameras
with the supplied stream ID, width, height and
quality.

Always/Asynchronous

ICVServerControl6::GetServerInfo

The GetServerInfo method retrieves a brief overview of the server information. This is a synchronous operation.

50

Syntax (C++)

HRESULT GetServerInfo (

 [ref, in, out] ServerInfo* serverInfo,

 [out] BSTR* error,

 [out, retval] VARIANT_BOOL* result

);

Parameters

serverInfo [in/out]

Pointer to a server information object, see ServerInfo. This must be passed in by API client.

error [out]

Description of error if any error is returned from the Result.

result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success.

Any other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK if the server information is successfully retrieved from the server. The return value can

also be E_POINTER if a connection to the Recording Server does not exist or S_FALSE if another error occurs.

ICVServerControl6::SaveStreamSnapshot

The SaveStreamSnapshot method saves a snapshot to a file with the supplied user parameters. This is a

synchronous operation. If width and height are not provided then the value of the original frame width and height

will be utilized.

To save a snapshot to a file using an automatically selected stream ICVServerControl3::SaveSnapshot should be

used.

Syntax (C++)

HRESULT SaveStreamSnapshot(

 [in] BSTR Filename,

 [in] INT Camera,

 [in] INT streamId,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Filename [in]

File to which the snapshot needs to be saved.

Camera [in]

Camera identifier (one-based index).

streamId [in]

Stream identifier (one-based index). Must be greater than or equal to 1.

51

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

On failure the resultant codes are outlined in the following table:

Failure Code Description
E_INVALIDARG One or more arguments are invalid

E_ACCESSDENIED General access denied error

E_ABORT Operation aborted

E_FAIL Unspecified error

Return Value

The return value is S_OK.

ICVServerControl6::GetStreamSnapshot

The GetStreamSnapshot method retrieves a live snapshot with the supplied camera ID, stream ID, width, and

height. This is a synchronous operation. If width and height are not provided then the value of the original frame

width and height will be utilized.

To retrieve a snapshot using an automatically selected stream ICVServerControl3::GetSnapshot should be used.

Syntax (C++)

HRESULT GetStreamSnapshot(

 [in] INT Camera,

 [in] INT streamId,

 [out] VARIANT *Buffer,

 [out] BSTR *Error,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Camera [in]

Camera identifier (one-based index).

streamId [in]

Stream identifier (one-based index). Must be greater than or equal to 1.

Buffer [out]

Buffer containing the requested snapshot.

52

Error [out]

Description of error if any error is returned from the Result.

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl6::GetStreamSnapshotsAsync

The GetStreamSnapshotsAsync method retrieves snapshots for the requested list of cameras with the supplied

camera ID, stream ID, width, height, and quality. This is an asynchronous operation. The method handler to

identify retrieval completion is OnSnapshotResult. If width and height are not provided then the value of the

original frame width and height will be utilized.

To asynchronously retrieve snapshots using an automatically selected stream

ICVServerControl3::GetSnapshotsAsync should be used.

To stop the asynchronous snapshot request use ICVServerControl3::StopSnapshotsAsync.

Syntax (C++)

HRESULT GetStreamSnapshotsAsync (

 [in] VARIANT Cameras,

 [in] INT streamId,

 [in, out] BSTR *Error,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [in, defaultvalue(100)] INT Quality,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Cameras [in]

List of camera indexes for snapshot retrieval. Empty list indicates all cameras.

streamId [in]

The stream identifier to use for the provided list of camera indexes (one-based). Must be greater than or

equal to 1.

Error [out]

Description of error if any error is returned from the Result.

53

Width [in]

Snapshot width.

Height [in]

Snapshot height.

Quality [in]

Snapshot quality. The range is 0 (worst quality) to 100 (best quality).

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl6::SaveStreamSnapshot

The SaveStreamSnapshot method saves a snapshot to a file with the supplied user parameters. This is a

synchronous operation. If width and height are not provided then the value of the original frame width and height

will be utilized.

To save a snapshot to a file using an automatically selected stream ICVServerControl3::SaveSnapshot should be

used.

Syntax (C++)

HRESULT SaveStreamSnapshot(

 [in] BSTR Filename,

 [in] INT Camera,

 [in] INT streamId,

 [in, defaultvalue(-1)] INT Width,

 [in, defaultvalue(-1)] INT Height,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Filename [in]

File to which the snapshot needs to be saved.

Camera [in]

Camera identifier (one-based index).

streamId [in]

Stream identifier (one-based index). Must be greater than or equal to 1.

Width [in]

Snapshot width.

Height [in]

Snapshot height.

54

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

On failure the resultant codes are outlined in the following table:

Failure Code Description
E_INVALIDARG One or more arguments are invalid

E_ACCESSDENIED General access denied error

E_ABORT Operation aborted

E_FAIL Unspecified error

Return Value

The return value is S_OK.

ICVServerControl7

The ICVServerControl7 interface inherits from the ICVServerControl6 interface. ICVServerControl7 offers additional

methods, summarized in the following table and described in detail in the text that follows.

Method Description Server Interaction
GetTrialLicenseInfo Gets trial license keys and uses Always/Synchronous

GetServerInfo2 Retrieves a brief overview of the server information. Always/Synchronous

ICVServerControl7::GetTrialLicenseInfo

The GetTrialLicenseInfo method retrieves info about the keys and uses of features. This is a synchronous operation.

Syntax (C++)

HRESULT GetTrialLicenseInfo (

 [out] VARIANT* Types,

 [out] VARIANT* Keys,

 [out] VARIANT* KeysUsed

);

Parameters

Types [out]

Array of enumFeature defining what feature the matching index of Keys and KeysUsed describes.

Keys [out]

Array of ints defining the number of keys for the Recording Server.

KeysUsed [out]

Array of ints defining the number of keys used for the Recording Server.

 ICVServerControl7::GetServerInfo2

The GetServerInfo2 method retrieves a brief overview of the server information. This is a synchronous operation.

file:///C:/Users/steven.orth/Downloads/CompleteView%20APIs%20(3).docx%23_ICVServerControl7::GetServerInfo2

55

This method is similar to GetServerInfo except that it accepts a ServerInfo2 object which contains additional fields

for failover license information, the product name, and brand information.

Syntax (C++)

HRESULT GetServerInfo2 (

 [ref, in, out] ServerInfo2* serverInfo,

 [out] BSTR* error,

 [out, retval] VARIANT_BOOL* result

);

Parameters

serverInfo [in/out]

Pointer to a server information object, see ServerInfo2. This must be passed in by API client.

error [out]

Description of error if any error is returned from the Result.

result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success.

Any other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK if the server information is successfully retrieved from the server. The return value can

also be E_POINTER if a connection to the Recording Server does not exist or S_FALSE if another error occurs.

ICVServerControl8

The ICVServerControl8 interface inherits from the ICVServerControl7 interface. ICVServerControl8 offers additional

properties, summarized in the following table and described in detail in the text that follows.

Property Description

Token The user access token to use when connecting to the server.

ProxyMode Whether or not proxy mode is enabled. Set to true if the server to connect to
is a proxy/gateway. Set to false if the server to connect to is a Recording
Server. By default, this property is set to false.

RecordingServerId The Recording Server GUID to send to the proxy/gateway server if proxy mode
is enabled. Required in order to use proxy mode so that the proxy/gateway
server knows where to forward server control messages.

GetServerInfo3 Retrieves a brief overview of the server information.

GetVideoDaysFromPoolsAsync Requests a list of days that contain video.

ICVServerControl8::Token

The Token property determines the user access token that is used on the next connection to a server. Changing

this property has no effect on the current connection (if any). The format of this token must be in JSON Web Token

(JWT) format (RFC7519). Use this as an alternative to the UserName and Password properties.

Syntax (C++)

HRESULT get_Token(

 [out] BSTR *pVal

56

);

HRESULT put_Token(

 [in] BSTR newVal

);

Parameters

pVal [out]

Receives the current value of the property.

newVal [in]

User access token to use in the next connection to a server.

Return Value

The return value is S_OK.

ICVServerControl8::ProxyMode

The ProxyMode property determines whether or not proxy mode is enabled. Set to true if the server to connect to

is a proxy/gateway. Set to false if the server to connect to is a Recording Server. By default, this property is set to

false.

Changing this property has no effect on the current connection (if any). In order to start a new connection, a

disconnect (if applicable) and a reconnect to the server is required.

Syntax (C++)

HRESULT get_ProxyMode(

 [out] VARIANT_BOOL *result

);

HRESULT put_ProxyMode(

 [in] const VARIANT_BOOL newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

True to enable proxy mode, false to disable proxy mode.

Return Value

The return value is S_OK.

ICVServerControl8::RecordingServerId

The RecordingServerId property specifies the Recording Server GUID to send to the proxy/gateway server if proxy

mode is enabled (i.e. if the ProxyMode property is set to true). This value is required in order to use proxy mode so

that the proxy/gateway server knows where to forward server control messages.

Changing this property has no effect on the current connection (if any). In order to start a new connection, a

disconnect (if applicable) and a reconnect to the server is required.

57

Syntax (C++)

HRESULT get_RecordingServerId(

 [out] GUID *result

);

HRESULT put_RecordingServerId(

 [in] const GUID newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

The Recording Server GUID to send to the proxy/gateway server if proxy mode is enabled.

Return Value

The return value is S_OK.

ICVServerControl8::GetServerInfo3

The GetServerInfo3 method retrieves a brief overview of the server information. This is a synchronous operation.

This method is similar to GetServerInfo except that it accepts a ServerInfo3 object which contains additional field

for storage mode information.

Syntax (C++)

HRESULT GetServerInfo3 (

 [ref, in, out] ServerInfo3* serverInfo,

 [out] BSTR* error,

 [out, retval] VARIANT_BOOL* result

);

Parameters

serverInfo [in/out]

Pointer to a server information object, see ServerInfo3. This must be passed in by API client.

error [out]

Description of error if any error is returned from the Result.

result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success.

Any other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK if the server information is successfully retrieved from the server. The return value can

also be E_POINTER if a connection to the Recording Server does not exist or S_FALSE if another error occurs.

58

ICVServerControl8:: GetVideoDaysFromPoolsAsync

The GetVideoDaysFromPoolsAsync method requests a list of the days that contain video. This is an asynchronous

operation. The method handler to identify retrieval completion is OnVideoDaysUpdate.

Syntax (C++)

HRESULT GetVideoDaysAsync (

 [in] VARIANT Cameras

 [in] VARIANT StoragePoolTypes,

 [in] VARIANT NvrNames,

 [in] StorageTypeToSearchCOM storageTypeToSearch,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Cameras [in]

List of cameras to serach. Empty list indicates all cameras.

StoragePoolTypes [in]

List of pool types to serach. Empty list along with `StorageTypeToSearchCOM::Pools` flag indicates all pool

types.

NvrNames [in]

List of NVR names to search. Empty list along with `StorageTypeToSearchCOM::Nvrs` flag indicates all

NVR’s.

StorageTypeToSearchCOM [in]

 Type/s of storage to search in. See StorageTypeToSearchCOM

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

ICVServerControl9

The ICVServerControl9 interface inherits from the ICVServerControl8 interface. ICVServerControl9 offers an

additional method, summarized in the following table and described in detail in the text that follows.

Property Description

GetLogEventsAsync2 Request a list of log events for the specified time period.

59

ICVServerControl9:: GetLogEventsAsync2

The GetLogEventsAsync2 method requests a list of log events for the specified camera(s) and time period. This

method requires that at least one event type is requested. This is an asynchronous operation. The method handler

to identify retrieval completion is OnLogEventsResult.

This method is similar to GetLogEventsAsync except that a list of cameras can be specified in addition to the time

period.

Syntax (C++)

HRESULT GetLogEventsAsync2 (

 [in] DATE Start,

 [in] DATE End,

 [in] BSTR TimeZoneStandardName,

 [in] UINT MaxResults,

 [in] VARIANT_BOOL IncludeServerEvents,

 [in] VARIANT Cameras,

 [in] VARIANT EventTypes,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Start [in]

Start time.

End [in]

End time.

TimeZoneStandardName [in]

String representing the standard timezone to use for this request (see Remarks). e.g. Pacific Standard

Time. If no time zone is supplied it will be assumed that the “Local” time zone is requested.

MaxResults [in]

Specifies the maximum number of events to return. A value of -1 specifies that there is no limit.

IncludeServerEvents [in]

Set to true to include server events.

Cameras [in]

 List of cameras to include, or empty to include all cameras.

EventTypes [in]

List of events to include. See EventType enumeration definition for a list of supported types.

Error [out]

Description of error if any error is returned from the Result.

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success.

Any other value is an internal implementation-defined error code and indicates failure.

60

Return Value

The return value is S_OK.

Remarks

It is strongly recommended to use a language-invariant time zone name, rather than a localized time zone name,

for the TimeZoneStandardName input value.

_ICVServerEvents

Client application developers should implement this interface if it is desirable to receive asynchronous notifications

from a CVServerControl.

_ICVServerEvents has methods summarized in the following table and described in the text that follows.

Method Description

OnConnectionLost Notifies the client application that the connection to the server has been
lost.

OnMotion Notifies the client application that a motion event has started or ended.

OnAlarm Notifies the client application that an alarm event has started or ended.

OnSyncLost Notifies the client application that the server has lost synchronization with
respect to a particular camera.

OnSyncGained Notifies the client application that the server has gained synchronization
with respect to a particular camera.

OnConnectionGained Notifies the client when the connection to the server is successfully
established.

OnSmartSearchProgress Notifies the client periodically once a smart search has been initiated and
returns the current date and the current progress in percent complete.

OnSmartSearchResult Notifies the client when the smart search completes and returns the results
of the requested search.

OnSystemStatsUpdate Notifies the client periodically with updated system statistics.

OnVolumeInfoUpdate Notifies the client periodically with updated volume information.

OnLicenseInfoUpdate Notifies the client periodically with updated license information.

OnConnectionInfoUpdate Notifies the client periodically with updated connection information.

OnEventInfoUpdate Notifies the client after a connection to the cameras is established. The result
contains information about the events as they occur.

OnCameraInfoUpdate Notifies the client periodically with updated information for a given list of
cameras.

OnSnapshotResult Notifies the client once a requested snapshot is available.

OnEventDaysUpdate Notifies the client on completion of GetEventDaysAsync query and returns
the list of days in the event log that contain events.

OnVideoDaysUpdate Notifies the client on completion of GetVideoDaysAsync query and returns
the list of days that contain video.

OnLogEventsResult Notifies the client on completion of log event actions and returns the results
of the query.

OnDeleteVideoFilesResult Notifies the client on completion of delete video file actions.

OnAdminServiceTaskResult Notifies the client on completion of admin service actions.

OnServiceStartup Notifies the client when a Recording Server service starts up.

OnServiceHeartbeat Notifies the client with a simple notification that the Recording Server is still
running.

OnServiceShutdown Notifies the client when a Recording Server service gracefully shuts down.

61

For all of these methods, the return value is ignored by the CVServerControl.

_ICVServerEvents::OnConnectionLost

The OnConnectionLost method is called when the connection to the server is lost.

Syntax (C++)

HRESULT OnConnectionLost(

 [in] BSTR ServerIP,

 [in] DATE EventTime

);

Parameters

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents::OnMotion

The OnMotion method is called when a motion event starts or ends.

Syntax (C++)

HRESULT OnMotion(

 [in] VARIANT_BOOL Start,

 [in] BSTR ServerIP,

 [in] SHORT CameraID,

 [in] DATE EventTime

);

Parameters

Start [in]

A Boolean value indicating whether the motion has started (VARIANT_TRUE) or ended (VARIANT_FALSE).

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

CameraID [in]

Camera identifier (one-based index).

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents::OnAlarm

The OnAlarm method is called when an alarm starts or ends.

Syntax (C++)

HRESULT OnAlaram(

 [in] VARIANT_BOOL Start,

 [in] BSTR ServerIP,

 [in] SHORT CameraID,

62

 [in] DATE EventTime

);

Parameters

Start [in]

A Boolean value indicating whether the alarm has started (VARIANT_TRUE) or ended (VARIANT_FALSE).

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

CameraID [in]

Camera identifier (one-based index).

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents::OnSyncLost

The OnSyncLost method is called when the server loses the video feed of a camera.

Syntax (C++)

HRESULT OnSyncLost(

 [in] BSTR ServerIP,

 [in] SHORT CameraID,

 [in] DATE EventTime

);

Parameters

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

CameraID [in]

Camera identifier (one-based index).

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents::OnSyncGained

The OnSyncGained method is called when the server successfully synchronizes to the video feed of a camera.

Syntax (C++)

HRESULT OnSyncGained(

 [in] BSTR ServerIP,

 [in] SHORT CameraID,

 [in] DATE EventTime

);

Parameters

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

63

CameraID [in]

Camera identifier (one-based index).

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents::OnConnectionGained

The OnConnectionGained method is called when the connection to the server is successfully established.

Syntax (C++)

HRESULT OnConnectionGained(

 [in] BSTR ServerIP,

 [in] DATE EventTime

);

Parameters

ServerIP [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

EventTime [in]

Event timestamp, in server local time.

_ICVServerEvents:: OnSmartSearchProgress

The OnSmartSearchProgress event handler is called periodically (every 500ms) after a smart search has been

initiated via the StartSmartSearch method. Returns the current date in the time zone specified by the

TimeZoneStandard parameter provided when calling the StartSmartSearch, and the current progress in percent

complete. Once the percent complete reaches 100 the smart search is ended and OnSmartSearchResult handler is

called.

Syntax (C++)

HRESULT OnSmartSearchProgress (

 DATE Position,

 INT PercentComplete

);

Parameters

Position [in]

Current smart search position in terms of data time.

PercentComplete [in]

Percent smart search complete.

_ICVServerEvents:: OnSmartSearchResult

The OnSmartSearchResult event is called when the StartSmartSearch completes.

Syntax (C++)

HRESULT OnSmartSearchResult (

 DATE ClipStart,

 DATE ClipEnd,

64

 INT ClipCategory,

 BSTR ClipDescription

);

Parameters

ClipStart [in]

Actual start time of the result clip.

ClipEnd [in]

Actual end time of the result clip.

ClipCategory [in]

Video category, see RecordingCategories

ClipDescription [in]

Description for the smart search result.

_ICVServerEvents:: OnSystemStatsUpdate

The OnSystemStatsUpdate event is only called if the ServerInfoType::TypeSystemStats is enabled via the

EnableServerInfo method call. The OnSystemStatsUpdate event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method).

Syntax (C++)

HRESULT OnSystemStatsUpdate (

 DOUBLE PhysicalMemoryAvailable,

 DOUBLE PhysicalMemoryUsed,

 DOUBLE VirtualMemoryAvail,

 DOUBLE VirtualMemoryUsed,

 DOUBLE SystemCpuUsage,

 DOUBLE ServerCpuUsage,

 DATE ServerStartTime

);

Parameters

PhysicalMemoryAvailable [in]

The amount of actual physical memory, in MB.

PhysicalMemoryUsed [in]

The amount of physical memory utilized, in MB.

VirtualMemoryAvail [in]

The size of the user-mode portion of the virtual address space of the calling process, in MB. This value

depends on the type of process, the type of processor, and the configuration of the operating system.

VirtualMemoryUsed [in]

The size of the user-mode portion of the virtual address space of the calling process utilized, in MB.

SystemCpuUsage [in]

Total CPU utilized by the server.

65

ServerCpuUsage [in]

CPU utilized by the CV server service.

ServerStartTime [in]

Server start time (UTC) as an unsigned 64-bit integer.

_ICVServerEvents:: OnVolumeInfoUpdate

The OnVolumeInfoUpdate event is only called if the ServerInfoType::TypeVolume is enabled via the

EnableServerInfo method call. The OnVolumeInfoUpdate event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method).

Syntax (C++)

HRESULT OnVolumeInfoUpdate (

 VARIANT PathList,

 VARIANT TypeList,

 VARIANT SizeList,

 VARIANT FreeSpaceList,

 VARIANT VolOfflineList,

 VARIANT ExtendedInfoList

);

Parameters

PathList [in]

Paths for current server volumes.

TypeList [in]

 Types of each of the volumes.

SizeList [in]

Total size for each of the volumes, in KB.

FreeSpaceList [in]

KB free for each of the volumes.

VolOfflineList [in]

True if volume is offline.

ExtendedInfoList [in]

Bit mask for volume information.

_ICVServerEvents:: OnLicenseInfoUpdate

The OnLicenseInfoUpdate event is only called if the ServerInfoType::TypeLicense is enabled via the

EnableServerInfo method call. The OnLicenseInfoUpdate event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method).

Syntax (C++)

HRESULT OnLicenseInfoUpdate (

 BSTR Server, BSTR ProductId,

 INT IpLicenses, INT UsedIpLicenses,

 INT AnalogLicenses, INT UsedAnalogLicenses,

66

 INT LicenseType, BSTR LicenseStatus,

 VARIANT FeatureKeys, VARIANT FeatureKeyDescs,

 VARIANT FeatureKeyQuantities);

Parameters

Server [in]

The host name or IP address of the server.

ProductId [in]

Product Id.

IpLicenses [in]

Number of IP licenses.

UsedIpLicenses [in]

Number of used IP licenses.

AnalogLicenses [in]

Number of analog licenses.

UsedAnalogLicenses [in]

Number of used analog licenses.

LicenseType [in]

License type.

LicenseStatus [in]

License status.

FeatureKeys [in]

List of feature key strings.

FeatureKeyDescs [in]

List of feature key descriptions.

FeatureKeyQuantities [in]

List of feature key quantities.

_ICVServerEvents:: OnConnectionInfoUpdate

The OnConnectionInfoUpdate event is only called if ServerInfoType::TypeConnection is enabled via the

EnableServerInfo method call. The OnConnectionInfoUpdate event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method).

Syntax (C++)

HRESULT OnConnectionInfoUpdate (

 VARIANT IdList,

 VARIANT PeerList,

 VARIANT ClientList,

 VARIANT UserList,

67

 VARIANT DescriptionList

);

Parameters

IdList [in]

List of connection Ids.

PeerList [in]

List of connected peers.

ClientList [in]

List of clients.

UserList [in]

List of logged in users.

DescriptionList [in]

List of descriptions.

_ICVServerEvents:: OnEventInfoUpdate

The OnEventInfoUpdate event is called after connection to the cameras is established and contains information

about the events as they occur.

Syntax (C++)

HRESULT OnEventInfoUpdate (

 BSTR Server,

 DATE EventTime,

 EventType Type,

 INT Camera,

 INT Connection,

 BSTR User,

 BSTR Description

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

EventTime [in]

Event timestamp, in server local time.

Type [in]

Type of event generated by Recording Server. See EventType enumeration.

Camera [in]

Camera identifier (one-based index). -1 if server event.

Connection [in]

Connection number, or 0 if not from a connection.

68

User [in]

User that triggered event, or empty if no user did.

Description [in]

Description of event.

_ICVServerEvents:: OnCameraInfoUpdate

The OnCameraInfoUpdate event is only called if the ServerInfoType::TypeCameraInfo is enabled via the

EnableServerInfo method call. The OnCameraInfoUpdate event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method) and contains information about a list of cameras.

Syntax (C++)

HRESULT OnCameraInfoUpdate (

 VARIANT IdList,

 VARIANT NameList,

 VARIANT TypeList,

 VARIANT VolumeList,

 VARIANT StatusMaskList

);

Parameters

IdList [in]

List of camera identifiers (one-based index).

NameList [in]

List of camera names.

TypeList [in]

Event timestamp, in server local time.

VolumeList [in]

List of volumes that the cameras are recording to. Volume is blank if camera is not currently recording.

StatusMaskList [in]

List of statuses for the cameras. Combination of status bits, see table below.

CameraStatusScheduled = 1 << 0 Scheduled recording is active

CameraStatusAlarm = 1 << 1 Ext alarm detected, ext alarm recording active

CameraStatusMotion = 1 << 2 Motion recording is active

CameraStatusMotionDetected = 1 << 3 Motion has been detected

CameraStatusPtz = 1 << 4 Camera is a PTZ

CameraStatusPrealarm = 1 << 5 Prealarm recording is active

CameraStatusSyncLost = 1 << 6 Camera not connected (analog or IP)

CameraStatusTourEnabled = 1 << 7 Tour enabled

CameraStatusStopped = 1 << 8 Camera is inactive (may or may not be enabled)

CameraStatusAudio = 1 << 9 Camera has audio

CameraStatusIp = 1 << 10 Camera is an IP camera

CameraStatusActiModel = 1 << 11 If the camera is ACTI model

CameraStatusNorestart = 1 << 12 Do not restart the camera if stopped

CameraStatusTransitioning = 1 << 13 Transitioning to stopped/started

69

CameraStatusDigitalptz = 1 << 14 Camera is using Digital PTZ protocol

CameraStatusRecordingFailed = 1 << 15 Recording failed

CameraStatusPresetToggle = 1 << 16 Camera Preset and/or Preset Name changed.

CameraStatusRecordingNvr = 1 << 17 Camera recording on NVR/DVR

_ICVServerEvents:: OnSnapshotResult

The OnSnapshotResult event is called on completion of the GetSnapshotAsync method.

Syntax (C++)

HRESULT OnSnapshotResult (

 BSTR Server,

 INT CameraId,

 VARIANT Snapshot,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

CameraId [in]

Camera identifier (one-based index).

Snapshot [in]

Snapshot retrieved.

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

_ICVServerEvents:: OnEventDaysUpdate

The OnEventDaysUpdate event is called to signal completion of the actions started utilizing the

GetVideoDaysAsync method.

Syntax (C++)

HRESULT OnEventDaysUpdate (

 VARIANT EventDays,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

EventDays [in]

List of days in the event log that contain events.

Success [in]

Boolean value representing success or failure of the retrieval operation.

70

Error [in]

Description of error if any.

_ICVServerEvents:: OnVideoDaysUpdate

The OnVideoDaysUpdate event is called to signal completion of the actions started utilizing the

GetVideoDaysAsync method.

Syntax (C++)

HRESULT OnVideoDaysUpdate (

 VARIANT VideoDays,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

VideoDays [in]

List of days that contain video.

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

_ICVServerEvents:: OnLogEventsResult

The OnLogEventsResult event is called to signal completion of the actions started utilizing the GetLogEventsAsync

or GetLogEventsAsync2 methods.

Syntax (C++)

HRESULT OnLogEventsResult (

 VARIANT EventTimes,

 VARIANT EventTypes,

 VARIANT CameraIds,

 VARIANT ConnectionIds,

 VARIANT Users,

 VARIANT Descriptions,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

EventTimes [in]

Event timestamps, in server local time.

EventTypes [in]

Event types. See EventType enumeration.

CameraIds [in]

Camera identifier (one-based index). Or -1 if server event.

71

ConnectionIds [in]

Connection number, or 0 if not from a connection.

Users [in]

User that triggered event, or empty if no user did.

Descriptions [in]

Description of event.

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

_ICVServerEvents:: OnDeleteVideoFilesResult

The OnDeleteVideoFilesResult event is called to signal completion of the actions started utilizing the

DeleteVideoFilesAsync method.

Syntax (C++)

HRESULT OnDeleteVideoFilesResult (

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

_ICVServerEvents:: OnAdminServiceTaskResult

The OnAdminServiceTaskResult event is called to signal completion of the actions started utilizing one of the

following methods: StartRecordingServiceAsync, StopRecordingServiceAsync, or RestartRecordingServiceAsync.

Syntax (C++)

HRESULT OnAdminServiceTaskResult (

 BSTR Server,

 AdminServiceTask Task,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

72

AdminServiceTask [in]

Complete task. See AdminServiceTask enumeration.

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

_ICVServerEvents:: OnServiceStartup

The OnServiceStartup event is called to signal that a Recording Server service has started running. This event is

sent via a broadcast message. To receive this message the broadcast listener must be started using the

StartServiceListener method.

Syntax (C++)

HRESULT OnServiceStartup (

 BSTR server,

 DATE serviceStartupTime,

 BSTR serverId

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

DATE [in]

Recording Server service startup time.

BSTR [in]

Recording Server identification, this is a GUID.

_ICVServerEvents:: OnServiceHeartbeat

The OnServiceStartup event is called to signal the Recording Server is running.

Syntax (C++)

HRESULT OnServiceHeartbeat (

 BSTR server,

 DATE heartbeatTime,

 BSTR serverId

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

DATE [in]

Recording Server service heartbeat time.

73

BSTR [in]

Recording Server identification, this is a GUID.

_ICVServerEvents:: OnServiceShutdown

The OnServiceShutdown event is called to signal that the Recording Server has gracefully shutdown.

Syntax (C++)

HRESULT OnServiceStartup (

 BSTR server,

 DATE serviceShutdownTime,

 BSTR serverId

);

Parameters

Server [in]

The host name or IP address of the server. (This is the same string used when connecting to the server.)

DATE [in]

Recording Server service shutdown time.

BSTR [in]

Recording Server identification, this is a GUID.

_ICVServerEvents2

The _ICVServerEvents2 interface inherits from the _ICVServerEvents interface. _ICVServerEvents2 offers additional

methods, summarized in the following table and described in detail in the text that follows.

Method Description

OnLicenseInfoUpdate2 Notifies the client periodically with updated license information.

OnSystemStatsUpdate2 Notifies the client periodically with updated system statistics.

_ICVServerEvents2::OnLicenseInfoUpdate2

The OnLicenseInfoUpdate2 event is only called if the ServerInfoType::TypeLicense is enabled via the

EnableServerInfo method call. The OnLicenseInfoUpdate2 event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method). Trial liceses will return no keys therefor to get the info

call GetTrialLicenseInfo.

Syntax (C++)

HRESULT OnLicenseInfoUpdate2 (

 BSTR Server, BSTR ProductId,

 INT LicenseType, BSTR LicenseStatus,

 VARIANT FeatureKeys, VARIANT FeatureKeyDescs,

 VARIANT FeatureKeyQuantities,

 VARIANT FeatureKeyUsedQuantities);

Parameters

Server [in]

The host name or IP address of the server.

74

ProductId [in]

Product Id.

LicenseType [in]

License type.

LicenseStatus [in]

License status.

FeatureKeys [in]

List of feature key strings.

FeatureKeyDescs [in]

List of feature key descriptions.

FeatureKeyQuantities [in]

List of feature key quantities.

FeatureKeyUsedQuantities [in]

List of feature key used quantities.

_ICVServerEvents2:: OnSystemStatsUpdate2

The OnSystemStatsUpdate2 event is only called if the ServerInfoType::TypeSystemStats is enabled via the

EnableServerInfo method call. The OnSystemStatsUpdate2 event is called periodically (poll interval is set via the

parameter PollIntervalMs in the EnableServerInfo method). This method provides two additional parameters

beyond those provided in _ICVServerEvents::OnSystemStatsUpdate.

Syntax (C++)

HRESULT OnSystemStatsUpdate2(

 DOUBLE physicalMemoryAvailable,

 DOUBLE physicalMemoryUsed,

 DOUBLE virtualMemoryAvail,

 DOUBLE virtualMemoryUsed,

 DOUBLE systemCpuUsage,

 DOUBLE serverCpuUsage,

 DOUBLE serverMemAvail,

 DOUBLE serverMemUsed,

 DATE ServerStartTime

);

Parameters

physicalMemoryAvailable [in]

The amount of actual physical memory, in MB.

physicalMemoryUsed [in]

The amount of physical memory utilized, in MB.

virtualMemoryAvail [in]

The size of the user-mode portion of the virtual address space of the calling process, in MB. This value

depends on the type of process, the type of processor, and the configuration of the operating system.

75

virtualMemoryUsed [in]

The size of the user-mode portion of the virtual address space of the calling process utilized, in MB.

systemCpuUsage [in]

Total CPU utilized by the server.

serverCpuUsage [in]

CPU utilized by the CV server service.

serverMemAvail [in]

Server memoyr available for use, in MB.

serverMemUsed [in]

The amount of used server memory, in MB.

serverStartTime [in]

Server start time (UTC) as an unsigned 64-bit integer.

_ICVServerEvents3

The _ICVServerEvents3 interface inherits from the _ICVServerEvents2 interface. _ICVServerEvents3 offers

additional methods, summarized in the following table and described in detail in the text that follows.

Method Description

OnEntityConfigChange Notifies the client of configuration changes applied to the Recording Server.

_ICVServerEvents3::OnEntityConfigChange

The OnLicenseInfoUpdate3 event is raised when changes to the Recording Server’s configuration are applied.

Syntax (C++)

HRESULT OnEntityConfigChange (

 BSTR server, EntityType entityType,

 DATE eventTime, BSTR entityId,

 BSTR description

);

Parameters

server [in]

The host name or IP address of the server on which the change occurred.

entityType [in]

The type of entity that changed. See EntityType.

eventType [in]

The time at which the change event occurred. This is the Recording Server’s local time.

76

entityId [in]

This string contains the unique identifier of the item that changed. The string contains a GUID.

description [in]

A description of the entity that changed.

_ICVServerEvents3::OnStoragePoolInfoUpdate

The OnStoragePoolInfoUpdate event is raised when changes to the Recording Server’s storage pool/s info is/are

retrieved.

Syntax (C++)

HRESULT OnStoragePoolInfoUpdate (

 BSTR poolGuidStr,

 StoragePoolType poolType,

 StoragePoolStatus poolStatus,

 UINT64 poolDriveCapacity,

 UINT64 poolDriveFreeSpace,

 UINT64 poolVideoCapacity,

 UINT64 poolVideoFreeSpace,

 UINT64 outsideStorage,

 UINT64 camStorageNoMinRetention,

 UINT64 camStorageWithMinRetention,

 VARIANT drivePath,

 VARIANT driveEnabled,

 VARIANT online,

 VARIANT overflowDrive,

 VARIANT capacity,

 VARIANT freeSpace,

 VARIANT reserveSpace,

 VARIANT videoCapacity,

 VARIANT videoFreespace,

 VARIANT driveOutsideStorage,

 VARIANT driveCamStorageNoMinRetention,

 VARIANT driveCamStorageWithMinRetention,

 VARIANT_BOOL Success,

 BSTR Error

);

Parameters

poolGuidStr [in]

Storage Pool GUID, string version.

poolType [in]

Storage Pool type. See StoragePoolType

poolStatus [in]

Storage Pool status (Good/Degraded/Failed). See StoragePoolStatus

77

poolDriveCapacity [in]

Total drive capacity of all drives that make up the pool (excluding overflow drives).

PoolDriveFreespace [in]

Total drive freespace of all drives that make up the pool (excluding overflow drives).

PoolVideoCapacity [in]

Total video space of all drives that make up the pool (excluding overflow drives).

PoolVideoFreespace [in]

Total video freespace of all drives that make up the pool (excluding overflow drives).

OutsideStorage [in]

Combined space consumed by outside storage in the pool.

CamStorageNoMinRetention [in]

Storage consumed in this pool by cameras with no minimum retention specified.

CamStorageWithMinRetention [in]

Storage consumed in this pool by cameras with with a minimum retention specified.

Note: The fields below are all variant and hold an array of items. Only if drive information is requested will

the fields below be populated. Otherwise, these will return with a null value.

DrivePath [in]

Full path to the root for video storage. – Returns an array of BSTR items.

DriveEnabled [in]

Is the drive enabled? - Returns an array of VARIANT_BOOL items.

Online [in]

Is the drive online? - Returns an array of VARIANT_BOOL items.

OverflowDrive [in]

Is this drive an overflow drive? - Returns an array of VARIANT_BOOL items.

Capacity [in]

Total drive capacity of the physical drive. - Returns an array of UINT64 items.

Freespace [in]

Total drive freespace of the physical drive. - Returns an array of UINT64 items.

ReserveSpace [in]

The drives reserve (safty buffer) space. - Returns an array of UINT64 items.

VideoCapacity [in]

Total video space allocated for this drive. - Returns an array of UINT64 items.

78

VideoFreespace [in]

Total video freespace of this drive (driveFreespace - driveReserveSpace). - Returns an array of UINT64 items.

DriveOutsideStorage [in]

Combined space cousumed by outside storage (videoCapacity - videoFreespace - videoStorage). - Returns an

array of UINT64 items.

DriveCamStorageNoMinRetention [in]

Storage consumed on this drive by cameras with no minimum retention specified. - Returns an array of

UINT64 items.

DriveCamStorageWithMinRetention [in]

Storage consumed on this drive by cameras with with a minimum retention specified. - Returns an array of

UINT64 items.

Success [in]

Boolean value representing success or failure of the retrieval operation.

Error [in]

Description of error if any.

CVServerControl API Enumerations

AdminServiceTask

The AdminServiceTask enumeration defines the types of Admin Service tasks.

Syntax (C++)

enum AdminServiceTask {

 None,

 StartRecordingService,

 StopRecordingService,

 RestartRecordingService

};

CameraPermission

The CameraPermission enumeration defines the types of per-camera access permissions for a user.

Syntax (C++)

enum CameraPermission {

 VIEW = 1<<0,

 PLAYBACK = 1<<1,

 PTZ = 1<<2,

 EXPORT = 1<<3,

 SNAPSHOT = 1<<4,

 AUDIO = 1<<5,

};

79

Remarks

The members of the CameraPermission enumeration are bit flags corresponding to the access permissions defined

on a per-user, per-camera basis:

VIEW The user is authorized to view the live output of the camera.

PLAYBACK The user is authorized to view recorded video from the camera.

PTZ The user is authorized to conduct pan-tilt-zoom control of the camera.

EXPORT The user is authorized to export video from the camera.

SNAPSHOT The user is authorized to export snapshots of the video from the camera.

AUDIO The user is authorized to enable audio on the camera.

EventType

The EventType enumeration defines events generated by the Recording Server.

Syntax (C++)

enum EventType {

 Unknown = 0,

 Begin = 1,

 Login = 1,

 Logout = 2,

 FailedLogin = 3,

 Start = 4,

 Stop = 5,

 Restart = 6,

 Error = 7,

 AlarmStart = 8,

 AlarmEnd = 9,

 MotionStart = 10,

 MotionEnd = 11,

 SyncLost = 12,

 SyncGained = 13,

 SaveConfig = 14,

 SetTime = 15,

 Info = 16,

 TcpConnected = 17,

 TcpDisconnected = 18,

 StartLiveView = 19,

 StartPlayback = 20,

 Debug = 21,

 RecFailed = 22,

 DftStart = 23,

 DftEnd = 24,

 VideoExport = 25,

 VolumeOnline = 26,

 VolumeOffline = 27,

 VolumeFull = 28,

 TriggerActivated = 29,

 TriggerDeactivated = 30,

80

 InputActivated = 31,

 InputDeactivated = 32,

 OutputActivated = 33,

 OutputDeactivated = 34,

 VolumeMinStorageViolated = 35,

 RecStartedAfterFailed = 36,

 RtspChannelCreated = 37,

 RtspChannelDestroyed = 38,

 RtspLiveConnected = 39,

 RtspLiveDisconnected = 40,

 InsufficientRetention = 43,

 MinRetentionViolation = 44,

 PoolDriveOffline = 45,

 DeleteFailed = 46,

 FreePoolSpaceFailed = 47,

 OverflowDriveActive = 48,

 MinCamRetentionActive = 49,

 PoolDriveOnline = 50,

 OverflowDriveInactive = 51,

 StorageThresholdMet = 52,

 WriteFailed = 53,

 GenericCamera = 54,

 DeviceCamera = 55,

 VideoSourceCamera = 56,

 VideoEncoderCamera = 57,

 VideoAnalyticsCamera = 58,

 RuleEngineCamera = 59,

 PtzControllerCamera = 60,

 AudioSourceCamera = 61,

 AudioEncoderCamera = 62,

 UserAlarmCamera = 63,

 MediaControlCamera = 64,

 RecordingConfigCamera = 65,

 RecordingHistoryCamera = 66,

 VideoOutputCamera = 67,

 AudioOutputCamera = 68,

 VideoDecoderCamera = 69,

 AudioDecoderCamera = 70,

 ReceiverCamera = 71,

 MonitoringCamera = 72,

 End = 73,

};

Remarks

These event types are not tied to logging, logging is one of actions as a result of these events.

Recording Server-specific Events

Unknown Unrecognized event

Begin Lower bound

81

Login Login

Logout Logout

FailedLogin Login failed

Start Main server starts

Stop Main server stops

Restart Main server restarts

Error General error occurred

AlarmStart Alarm started

AlarmEnd Alarm ended

MotionStart Motion detection started

MotionEnd Motion detection ended

SyncLost Synchronization to server lost

SyncGained Synchronization to server gained

SaveConfig Server configuration changes saved

SetTime Set server time

Info Informational message

TcpConnected Accepted TCP connection

TcpDisconnected Closed TCP connection

StartLiveView Live view started

StartPlayback Recorded playback started

Debug Debug message

RecFailed Error recording video to volume

DftStart DFT started

DftEnd DFT ended

VideoExport Export of video occurred

VolumeOnline Recording volume online

VolumeOffline Recording volume offline

VolumeFull Recording volume full

TriggerActivated Trigger activated

TriggerDeactivated Trigger deactivated

InputActivated Input pin on the device was activated

InputDeactivated Input pin on the device was deactivated

OutputActivated Output activated

OutputDeactivated Output deactivated

VolumeMinStorageViolated Volume minimum storage time period violated due to free space delete

RecStartAfterFailed Recording has restarted after a recording failure

RtspChannelCreated An rtsp channel has been created

RtspChannelDestroyed An rtsp channel has been removed

RtspLiveConnected A live connection has been established by a client to an rtsp channel

RtspLiveDisconnected A live connection has been closed by a client to an rtsp channel

InsufficientRetention Storage pool drive space for a particular drive is projected to be insufficient
to meet expected retention

MinRetentionViolation Minimum retention for a particular storage pool has been violated

PoolDriveOffline A drive in a storage pool has gone offline

DeleteFailed Failed to delete video clip

FreePoolSpaceFailed Failed to free up space for a particular storage pool

OverflowDriveActive Writing to overflow drive is active

MinCamRetentionActive Video is being deleted from cameras with a minimum retention policy

PoolDriveOnline A drive in a storage pool has gone online

OverflowDriveInactive Writing to overflow drive is inactive

82

StorageThresholdMet Pool storage has fallen below it's set percent threshold

WriteFailed Failed to write video clip

GenericCamera A generic camera event occurred

DeviceCamera A device camera event occurred

VideoSourceCamera A video source camera event occurred

VideoEncoderCamera A video encoder camera event occurred

VideoAnalyticsCamera A video analytics camera event occurred

RuleEngineCamera A rule engine camera event occurred

PtzControllerCamera A PTZ controller camera event occurred

AudioSourceCamera An audio source camera event occurred

AudioEncoderCamera An audio encoder camera event occurred

UserAlarmCamera A user alarm camera event occurred

MediaControlCamera A media control camera event occurred

RecordingConfigCamera A recording config camera event occurred

RecordingHistoryCamera A recording history camera event occurred

VideoOutputCamera A video output camera event occurred

AudioOutputCamera An audio output camera event occurred

VideoDecoderCamera A video decoder camera event occurred

AudioDecoderCamera An audio decoder camera event occurred

ReceiverCamera A receiver camera event occurred

MonitoringCamera A monitoring camera event occurred

End Upper bound

RecordingCategory

The RecordingCategory enumeration will be used by clients to specify what category of clips should be searched.

Syntax (C++)

enum RecordingCategory {

 Continuous = 1<<0,

 Alarm = 1<<1,

 Motion = 1<<2,

 Exported = 1<<3

};

Remarks

The members of the RecordingCategory enumeration are bit flags corresponding to the type of video category

defined on a per-camera basis:

Continuous Scheduled recording.

Alarm Alarm recording.

Motion Motion detection recording.

Exported Exported clips.

ServerInfoType

The ServerInfoType enumeration will be used by clients to specify what types of server information to send to the

subscribed client.

Syntax (C++)

83

enum ServerInfoType {

 TypeAll = 0,

 TypeSystemStats = 1,

 TypeVolume = 2,

 TypeLicense = 3,

 TypeCameraInfo = 4,

 TypeConnection = 5,

 TypeStoragePool = 6,

};

Remarks

TypeAll All types.

TypeSystemStats System statistics.

TypeVolume Volume information.

TypeLicense License information.

TypeCameraInfor Camera information.

TypeConnection Connection information.

TypeStoragePool Storage Pool/s information that is/are
configured in server.

EntityType

The EntityType enumeration is used when reporting changes to entities within a Recording Server. It specifies the

type of the entity that was changed so the the subscribed client can react accordingly.

Syntax (C++)

enum EntityType {

 Undefined = -1,

 Server = 0,

 Camera = 1,

 Volume = 2,

 AlarmType = 3,

 User = 4,

 Trigger = 5,

 Logger = 6,

 View = 7,

 Map = 8,

 Task = 9,

 Program = 10,

 Schedule = 11,

 StoragePool = 12

};

Remarks

The specific types of Recording Server entities whose configuration changes are reported.

Undefined An unspecified entity type configuration
changed.

Server Server configuration changed.

84

Camera Camera configuration changed.

Volume Volume configuration changed.

Alarm Alarm configuration changed.

User User configuration changed.

Trigger Trigger configuration changed.

Logger Logger configuration changed.

View View configuration changed.

Map Map configuration changed.

Task Not used for configuration changed
events.

Program Not used for configuration changed
events.

Schedule Schedule configuration changed.

StoragePool Storage pool configuration changed.

StoragePoolType

The StoragePoolType enumeration is used when requesting storage pool statistics.

Syntax (C++)

enum StoragePoolType {

 Regular = 0,

 Archive = 1,

 Backup = 2,

 ExportPool = 3,

 Recorder = 4,

 Failover = 5,

 Overflow = 6

};

Remarks

StorageModeManager

The StorageModeManager enumeration denotes types of storage modes supported by the Recording Server.

Syntax (C++)

enum StorageModeManager {

 ManagerNone = 0,

 ManagerVolume = 1,

 ManagerStoragePool = 2,

};

Remarks

StoragePoolStatus

The StoragePoolStatus enumeration denotes types of storage status supported by the Recording Server.

85

Syntax (C++)

enum StoragePoolStatus {

 StatusUnknown = -1,

 Good = 0,

 Degraded = 1,

 Failed = 2,

};

Remarks

StorageTypeToSearchCOM

The StorageTypeToSearchCOM enumeration denotes types of storage to search videoes in.

Syntax (C++)

enum class StorageTypeToSearchCOM : int {

 Pools = 1 << 0,

 Nvrs = 1 << 1

};

Remarks

CVServerControl API Structures

CameraDetails

The CameraDetails structure defines fields and data types. CameraDetails is required in order to use the

GetCameraDetails method.

Syntax (C++)

typedef struct CameraDetails

{

 VARIANT_BOOL UserCanView;

 VARIANT_BOOL UserCanPlayback;

 VARIANT_BOOL UserCanMultiPlayback;

 VARIANT_BOOL UserCanExport;

 VARIANT_BOOL UserCanSnapshot;

 VARIANT_BOOL UserCanToggleLight;

 VARIANT_BOOL UserCanToggleAudio;

 VARIANT_BOOL UserCanBurnDvd;

 VARIANT_BOOL CameraHasLight;

 VARIANT_BOOL DeviceSupportsExport;

 VARIANT_BOOL IsDSPEnabled;

 VARIANT_BOOL HasImmervisionLens;

 VARIANT_BOOL UserCanPtz;

 VARIANT_BOOL ThumbnailSupportAvailable;

86

 UINT Status;

 INT CameraType;

 INT VideoSize;

 INT HotspotFPS;

 INT HotspotCompressorType;

 INT CameraPosition;

 INT LensProfile;

 INT DewarpLensType;

 INT FisheyeCenterX;

 INT FisheyeCenterY;

 INT FisheyeRadius;

 INT CameraId;

 BSTR Name;

 BSTR Volume;

 BSTR TimeZoneStandardName;

 VARIANT PresetNameList;

 VARIANT LensCurveData;

} CameraDetails;

Remarks

UserCanView Logged in user is allowed to view this camera.

UserCanPlayback Logged in user is allowed to play back this camera.

UserCanMultiPlayback Logged in user is allowed multi-playback for this camera.

UserCanExport Logged in user is allowed to play back and export this camera.

UserCanSnapshot Logged in user is allowed to snapshot.

UserCanToggleLight Logged in user is allowed to toggle camera light.

UserCanToggleAudio Logged in user is allowed to toggle camera audio.

UserCanBurnDvd Logged in user can burn clips to CD/DVD.

CameraHasLight Camera light capability.

DeviceSupportsExport Camera/NVR channel supports export.

IsDSPEnabled Disable Server Processing. True if DSP is set for this camera.

HasImmervisionLens True if the feature is present.

UserCanPtz True if user has permissions to PTZ.

ThumbnailSupportAvailable Camera supports thumbnails.

Status Camera status bit mask.

CameraType Camera type

VideoSize Video size.

HotspotFPS Include camera hot spot FPS.

HotspotCompressorType Include camera hot spot compressor type.

CameraPosition Fisheye lens position.

LensProfile Immervision lens profile.

DewarpLensType Fisheye lens type (STANDARD if non-fisheye).

FisheyeCenterX Fisheye center's X coordinate.

FisheyeCenterY Fisheye center's Y coordinate.

FisheyeRadius Fisheye calibration circle radius.

CameraId Camera ID.

Name Name of the camera.

Volume Volume path of the camera.

87

TimeZoneStandardName Time zone standard name (may be localized).

PresetNameList Preset Name List (list of string).

LensCurveData Camera's Binary Large OBject (BLOB) Data / Lens curve data.

IoDetails

The IoDetails structure defines fields and data types used to describe I/O devices. IoDetails is required in order to

use the GetIoDetailByIndex and GetIoDetailByGuid methods.

Syntax (C++)

typedef struct IoDetails

{

 GUID deviceGuid;

 BSTR deviceName;

 INT deviceNumber;

 VARIANT outputNumbers;

 VARIANT outputNames;

 VARIANT deviceTypes;

 VARIANT triggerStates;

} IoDetails;

Remarks

The outputNumbers, outputNames, deviceTypes and triggerStates are all parameters used to represent outputs on

an I/O device. The parameters have been flattened into arrays of base types in order to enable marshaling of the

nested user defined OutputInfo structure via the API. Once received, these parameters may be grouped together

based on their indices within the array, to represent an OutputInfo object.

deviceGuid Guid to uniquely identify I/O device.

deviceName Device name.

deviceNumber Index to identify I/O device.

outputNumbers Indices of outputs associated with device. This is stored as an
array of 4 byte integers, encapsulated into a VARIANT.

outputNames Names of outputs associated with device. This is stored as an
array of strings, encapsulated into a VARIANT.

deviceTypes Device type of outputs associated with device. This is stored as
an array of 4 byte integers, encapsulated into a VARIANT.

triggerStates Whether outputs associated with device are set or reset. This is
stored as an array of 4 byte integers, encapsulated into a
VARIANT.

QueueExportClipInfo

This struct specifies the settings used when exporting a video clip to a Recording Server export volume.

88

Syntax (C++)

typedef struct QueueExportClipInfo

{

 BSTR Description;

 INT CameraId;

 DATE StartTime;

 DATE EndTime;

 BSTR ServerTimeZone;

 BSTR CameraTimeZone;

 UINT64 ClipSizeKb;

 INT LensType;

 INT LensOrientation;

 INT FisheyeCenterX;

 INT FisheyeCenterY;

 INT FisheyeRadius;

 INT LensProfile;

 INT ExportType;

} QueueExportClipInfo;

Remarks

Description Description of the video clip.

CameraId Camera ID.

StartTime Start time of the video clip. This must be in the time zone of the
local machine that issues this export request.

EndTime End time of the video clip. This must be in the time zone of the
local machine that issues this export request.

ServerTimeZone Time zone of the Recording Server (may be localized).

CameraTimeZone Time zone of the camera (may be localized).

ClipSizeKb File size in kilobytes of the video clip.

LensType Fisheye lens type (STANDARD if non-fisheye).

LensOrientation Fisheye lens orientation.

FisheyeCenterX Fisheye center's X coordinate.

FisheyeCenterY Fisheye center's Y coordinate.

FisheyeRadius Fisheye calibration circle radius.

LensProfile Immervision lens profile.

ExportType Export type (1 = queue, 2 = trailing).

ServerInfo

The ServerInfo structure defines fields that describe information about the Recording Server. ServerInfo is required

in order to use the ICVServerControl6::GetServerInfo method.

Syntax (C++)

typedef struct ServerInfo

{

 BSTR FriendlyName;

 BSTR IpAddress;

89

 BSTR Version;

 BSTR Guid;

 BSTR ProductId;

 BSTR LicenseType;

 INT UsedIpLicenses;

 INT AvailableIpLicenses;

 INT UsedAnalogLicenses;

 INT AvailableAnalogLicenses;

} ServerInfo;

Remarks

FriendlyName The server friendly name.

IpAddress The server IP address.

Version The server version.

Guid The server GUID.

ProductId The product ID.

LicenseType The license type.

UsedIpLicenses The number of IP licenses used on the server.

AvailableIpLicenses The number of IP licenses available on the server.

UsedAnalogLicenses The number of analog licenses used on the server.

AvailableAnalogLicenses The number of analog licenses available on the server.

ServerInfo2

The ServerInfo2 structure defines fields that describe information about the Recording Server. ServerInfo2 is

required in order to use the ICVServerControl7::GetServerInfo2 method.

The ServerInfo2 structure is similar to ServerInfo except that it contains additional fields for failover license

information, the product name, and brand information.

Syntax (C++)

typedef struct ServerInfo2

{

 BSTR FriendlyName;

 BSTR IpAddress;

 BSTR Version;

 BSTR Guid;

 BSTR ProductId;

 BSTR LicenseType;

 INT UsedIpLicenses;

 INT AvailableIpLicenses;

 INT UsedAnalogLicenses;

 INT AvailableAnalogLicenses;

 INT UsedFailoverLicenses;

 INT AvailableFailoverLicenses;

 BSTR ProductName;

 VARIANT_BOOL IsBranded;

} ServerInfo2;

90

Remarks

FriendlyName The server friendly name.

IpAddress The server IP address.

Version The server version.

Guid The server GUID.

ProductId The product ID.

LicenseType The license type.

UsedIpLicenses The number of IP licenses used on the server.

AvailableIpLicenses The number of IP licenses available on the server.

UsedAnalogLicenses The number of analog licenses used on the server.

AvailableAnalogLicenses The number of analog licenses available on the server.

UsedFailoverLicenses The number of failover licenses used on the server.

AvailableFailoverLicenses The number of failover licenses available on the server.

ProductName The product name.

IsBranded Whether or not the product is branded. False for Salient
CompleteView installations, true otherwise.

ServerInfo3

The ServerInfo3 structure defines fields that describe information about the Recording Server. ServerInfo3 is

required in order to use the ICVServerControl8::GetServerInfo3 method.

The ServerInfo3 structure is similar to ServerInfo except that it contains additional field for storage mode

information.

Syntax (C++)

typedef struct ServerInfo3

{

 BSTR FriendlyName;

 BSTR IpAddress;

 BSTR Version;

 BSTR Guid;

 BSTR ProductId;

 BSTR LicenseType;

 INT UsedIpLicenses;

 INT AvailableIpLicenses;

 INT UsedAnalogLicenses;

 INT AvailableAnalogLicenses;

 INT UsedFailoverLicenses;

 INT AvailableFailoverLicenses;

 BSTR ProductName;

 VARIANT_BOOL IsBranded;

 INT StorageMode;

} ServerInfo3;

Remarks

91

FriendlyName The server friendly name.

IpAddress The server IP address.

Version The server version.

Guid The server GUID.

ProductId The product ID.

LicenseType The license type.

UsedIpLicenses The number of IP licenses used on the server.

AvailableIpLicenses The number of IP licenses available on the server.

UsedAnalogLicenses The number of analog licenses used on the server.

AvailableAnalogLicenses The number of analog licenses available on the server.

UsedFailoverLicenses The number of failover licenses used on the server.

AvailableFailoverLicenses The number of failover licenses available on the server.

ProductName The product name.

IsBranded Whether or not the product is branded. False for Salient
CompleteView installations, true otherwise.

StorageMode An enum value of type “StorageModeManager”.

CVClientControl API
The CVClientControl API provides a set of interfaces that allow applications to stream video from CompleteView

servers (possibly with audio). There are two primary interfaces:

• ICVVideo, which represents an abstract connection to a particular camera on a CompleteView server. This

interface is implemented by the CVVideo ActiveX control and invoked by the application.

• ICVVideoEvents, through which the CVVideo ActiveX control provides the application with asynchronous

notifications of significant events. This interface is (optionally) implemented by the application.

A secondary interface, ICVVideo2, extends ICVVideo. ICVVideo2 can be thought of as a newer version of ICVVideo.

For the sake of brevity, in the remainder of this section we often refer to the CVVideo Active X control as (simply)

the CVVideo control.

Using the CVClientControl API

Method Contexts

Every method in the CVClientControl API has a context in which it makes sense to call that method. These contexts

roughly correspond to states of the CVVideo control. There are four such contexts, illustrated in the following

Venn diagram:

92

Note that these contexts are fully nested. A contained context is a restriction of its containing contexts. In other

words, a method associated with an outer (containing) context can always be used profitably in an inner

(contained) context.

General Context

An application can sensibly call the methods associated with the General context at any time. The methods

associated with the General context do not require the previous successful execution of any other methods.

There are three classes of methods associated with the General context:

1. The truly general methods do use the values of any properties.

2. The server-oriented methods rely on the values of the Server, Username, and Password properties, so it

only makes sense to call these methods after setting these three properties.

3. The camera-oriented methods rely on the value of the Camera property in addition to the Server,

Username, and Password properties. It only makes sense to call these methods after setting all four of

these properties.

Here is the full list of CVClientControl methods associated with the General context (organized by class):

• GetFilePathName [truly general]

• GetViewOption [truly general]

• SetViewOption [truly general]

• ConnectSync [server-oriented]

• ConnectSyncResult [server-oriented]

• GetCameraInfo [server-oriented]

General

Connection

Playback

Paused

93

• GetNumberOfCameras [server-oriented]

• GetServerTime (ICVVideo2) [server-oriented]

• GetServerTimeZone (ICVVideo2) [server-oriented]

• Connect [camera-oriented]

• SearchVideo (ICVVideo2) [camera-oriented]

• SetTimeZone (ICVVIdeo2) [truly general]

Particularly noteworthy is the Connect method. The successful execution of Connect causes the CVVideo control to

enter the Connection context, described next.

Connection Context

An application can sensibly invoke the methods associated with the Connection context only after a successful

execution of the Connect method, and before any subsequent execution of the Disconnect method. In the

Connection context, there is an established connection to a camera (and implicitly to a server administering that

camera). We refer to this camera as the current camera (and the server as the current server.)

One important thing to note about the Connection context (and implicitly those contexts nested within it) are that

they do not depend on the current values of the Server, Username, Password, and Camera properties, i.e. the

properties that helped you get there. These properties can be changed while in the Connection context without

affecting the context in any way, though it may be considered ill-advised to make such changes.

Here is the full list of CVClientControl methods associated with the Connection context:

• AutoFocus

• AutoIris

• Disconnect

• EnableAudio

• Focus

• GotoPreset

• Iris

• Playback

• SaveSnapshot

• SaveSnapshotScaled

• SetCameraOverlay (DEPRECATED in version 5.X, use SetServerCameraOverlay)

• SetPreset

• GetSnapshot (ICVVideo2)

• GetSnapshotScaled (ICVVideo2)

• SetClientCameraOverlay (ICVVideo3)

• SetServerCameraOverlay (ICVVideo3)

• GotoHomePreset (ICVVideo3)

The Disconnect method takes the CVVideo control out of the Connection context. The Playback method causes

the CVVideo control to enter the Playback context, discussed next.

Playback Context

An application can sensibly invoke the methods associated with the Playback context only after a successful

execution of the Playback method, and before any subsequent execution of the Disconnect or Connect method. In

94

the Playback context, there is an established connection to a camera, and a video playback interval has been

established. In the Playback context the CVVideo control is oriented around playback of recorded video as

opposed to viewing of live video.

Here is the full list of CVClientControl methods associated with the Playback context:

• EndPosition

• ExportClip

• ExportWizard

• PlaybackRate

• Position

• Seek

• Start

• StartPosition

• Stop

On entering the Playback context the video is paused at the first frame of the playback interval. The Start method

initiates the actual playback. The Stop method pauses the playback and causes the CVVideo control to enter the

Paused context.

The Connect method may be used to leave the Playback context. The Disconnect method may be used to leave

the Playback context and Connection context.

Paused Context

An application can sensibly invoke the methods associated with the Paused context only after a successful

execution of the Stop method, and before any subsequent execution of the Disconnect method or the Start

method. In the Paused context, there is an established connection to a camera, an established playback interval,

and the playback has been paused.

Here is the full list of CVClientControl methods associated with the Paused context:

• StepBack

• StepForward

The Start method causes the CVVideo control to leave the Paused context. The Connect method may be used to

leave the Paused and Playback contexts. The Disconnect method may be used to leave the Paused, Playback, and

Connection contexts.

Threading Model

CVClientControl is an apartment threaded COM server, so each CVVideo control instance must be used on only a

single thread, and that thread must have a Windows message loop.

A few of the methods in the CVClientControl API perform a synchronous message exchange with a CompleteView

server. These methods are specially designed with an embedded Windows message loop and a visible (modal)

dialog box, providing user feedback and preventing “lockup” of the UI during abnormally lengthy operations. For

many applications this usage pattern will be adequate. However, some application developers may want to

consider putting the CVVideo control instance on a thread other than the main user interface thread. As

mentioned above, such an alternate thread must have a message pump.

95

CVClientControl API Reference

ICVVideo

Application developers should not implement this interface. The CVVideo control provides this functionality.

Note: In C++, all properties are retrieved by a method whose name is formed by prepending get_ to the name of

the property. For example, if the property’s name is Password, then get_Password retrieves the property.

Similarly, writable properties are set by a method whose name is formed by prepending put_ to the name of the

property, e.g. put_Password.

The ICVVideo interface inherits from the IDispatch interface, and has additional properties and methods

summarized in the following tables and described in detail in the text that follows.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms221608(v=vs.85).aspx

96

Property Description

Camera Identifies the camera, as distinguished from the other cameras managed by the
CompleteView server.

FPS Frames per second in the streaming video.

HasAudio (read-only) Indicates camera support for audio.

IsPTZ (read-only) Indicates camera support for PTZ control.

PTZRepeat Whether or not to periodically repeat the most recent PTZ command.

Password Password with which to log on to the CompleteView server.

Quality Quality of the streaming video.

Server Identifies the CompleteView server.

ShowStatus Determines whether status text is displayed when there is no video.

KeyframeRate Key frames per second for streaming live video.

Username User name with which to log on to the CompleteView server.

Method Description Context

AutoFocus Turns on auto focus. Connection

AutoIris Turns on auto iris. Connection

Connect Initiates connection to a camera. General (camera-
oriented)

ConnectSync Tests the accessibility of a server. General (server-oriented)

ConnectSyncResult Tests the accessibility of a server and provides one of
several result codes.

General (server-oriented)

Disconnect Tears down the current camera connection. Connection

EnableAudio Enables or disables audio. Connection

EndPosition Gets the end date/time of the current playback interval. Playback

ExportClip Exports the current playback interval to a file. Playback

ExportWizard Presents a user interface that guides the user through
the exporting of a video clip.

Playback

Focus Sets the camera’s focus speed. Connection

GetCameraInfo Gets a camera name and status. General (server-oriented)

GetFilePathName Presents a standard file chooser dialog with JPEG (.JPG)
as the primary, default file type.

General (truly general)

GetNumberOfCameras Retrieves the number of cameras on the server. General (server-oriented)

GetViewOption Gets the current video viewing option. General (truly general)

GotoPreset Moves the camera to a preset location. Connection

Iris Sets the camera’s iris speed. Connection

Playback Sets the video playback interval. Connection

PlaybackRate Adjusts the playback rate. Playback

Position Retrieves the current playback position. Playback

SaveSnapshot Saves the current video frame to a JPEG file. Connection

SaveSnapshotScaled Saves the current video frame to a JPEG file, with
optional image scaling.

Connection

Seek Seeks to a particular position in the current playback. Playback

SetCameraOverlay Changes the camera’s overlay settings. Connection

SetPreset Sets a camera preset. Connection

SetViewOption Sets the current viewing option (stretching or
letterbox).

General (truly general)

Start Starts playback of recorded video. Playback

StartPosition Gets the start date/time of the current playback
interval.

Playback

97

StepBack Goes backward one video frame (while playback is
paused).

Paused

StepForward Goes forward one video frame (while playback is
paused).

Paused

Stop Pauses playback. Playback

ICVVideo::AutoFocus

The AutoFocus method instructs the current camera to turn on auto focus, if this feature is supported by the

camera.

Syntax (C++)

HRESULT AutoFocus(

);

Parameters

The AutoFocus method has no parameters.

Return Value

The return value is S_OK.

Remarks

AutoFocus is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

AutoFocus is a best-effort method providing no indication of whether or when the camera actually executes the

command.

ICVVideo::AutoIris

The AutoIris method instructs the current camera to turn on auto iris, if this feature is supported by the camera.

Syntax (C++)

HRESULT AutoIris(

);

Parameters

The AutoIris method has no parameters.

Return Value

The return value is S_OK.

Remarks

AutoIris is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

AutoIris is a best-effort method providing no indication of whether or when the camera actually executes the

command.

98

ICVVideo::Camera

The Camera property represents the camera identifier (a one-based index). This value determines the particular

camera to connect to on the next connection attempt. It is necessary to set this property before calling Connect.

Changing the value of this property has no effect on the connection after Connect has been called.

Syntax (C++)

HRESULT get_Camera(

 [out] SHORT *Result

);

HRESULT put_Camera(

 [in] SHORT NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

Target camera identifier (one-based index) for the next connection attempt.

Return Value

The return value is S_OK.

ICVVideo::Connect

The Connect method initiates the process of connecting to the camera identified by the Camera property managed

by the server identified by the Server property, using the logon credentials defined by the Username and Password

properties.

Syntax (C++)

HRESULT Connect(

);

Parameters

The Connect method has no parameters.

Return Value

The return value is S_OK.

Remarks

The connection is established asynchronously. The CVVideo control will call either one of OnConnected or

OnFailedConnection (in the ICVVideoEvents interface) to report the eventual outcome of the connection attempt.

Important: API access must be enabled on the server (for the user identified by the UserName property) for a

connection to be made successfully.

If the CVVideo control was previously connected to a camera, that connection is torn down, followed by initiation

of a new connection.

99

Connect is associated with the General context, meaning that it can be usefully called at any time. Note, however,

that the successful establishment of a connection depends on the values of the Server, Username, Password, and

Camera properties. On successful connection, the CVVideo control enters the Connection context.

ICVVideo::ConnectSync

The ConnectSync method attempts to synchronously connect to the server identified by the Server property, using

credentials supplied by the Username and Password properties. When successful, the connection is immediately

terminated, before this method returns.

Syntax (C++)

HRESULT ConnectSync(

 [out] VARIANT_BOOL *Result

);

Parameters

Result [out]

Receives a Boolean indicating the success (VARIANT_TRUE) or failure (VARIANT_FALSE) of the connection

attempt.

Return Value

The return value is S_OK.

Remarks

Use ConnectSync to test whether a given server is accessible. Any existing connection established by the Connect

method is unaffected.

Important: API access must be enabled on the server (for the user identified by the UserName property) for a

connection to be made successfully.

This method does NOT cause the OnConnected or OnFailedConnection events to be fired. The returned Boolean is

the only indication of success.

Windows messages will continue to be dispatched during the message exchange with the server.

ConnectSync is associated with the General context, meaning that it can be usefully called at any time. Note,

however, that its successful (and meaningful) execution depends on the values of the Server, Username, and

Password properties.

ICVVideo::ConnectSyncResult

The ConnectSyncResult method synchronously attempts to connect to the server identified by the Server property,

using credentials supplied by the Username and Password properties. When successful, the connection is

immediately terminated, before this method returns. This method returns more detailed connection status

information than the ConnectSync method.

Syntax (C++)

HRESULT ConnectSync(

 [out] ConnectResults *Result

);

100

Parameters

Result [out]

Receives a ConnectResults value indicating the result of the connection attempt.

Return Value

The return value is S_OK.

Remarks

Use ConnectSyncResult to test whether a given server is accessible and when more than a Boolean success/failure

indication is desired.

Any existing connection established by the Connect method is unaffected.

Important: API access must be enabled on the server (for the user identified by the UserName property) for a

connection to be made successfully.

This method does NOT cause the OnConnected or OnFailedConnection events (ICVVideoEvents) to be fired. The

returned ConnectResults value is the only indication of success.

Windows messages will continue to be dispatched during the message exchange with the server.

ConnectSyncResult is associated with the General context, meaning that it can be usefully called at any time. Note,

however, that its successful (and meaningful) execution depends on the values of the Server, Username, and

Password properties.

ICVVideo::Disconnect

The Disconnect method tears down the current connection to the camera.

Syntax (C++)

HRESULT Disconnect(

);

Parameters

The Disconnect method has no parameters.

Return Value

The return value is S_OK.

Remarks

Disconnect takes down the current connection, if one has been established. If a connection has been initiated (via

Connect) but not completed, then that connection attempt is aborted.

Disconnect is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera. Disconnect causes the CVVideo control to leave the Connection context.

ICVVideo::EnableAudio

The EnableAudio method instructs the current camera to enable or disable audio.

Syntax (C++)

HRESULT EnableAudio(

101

 [in] VARIANT_BOOL Enable,

 [out] VARIANT_BOOL *Result

);

Parameters

Enable [in]

Boolean indicating whether to enable (VARIANT_TRUE) or disable (VARIANT_FALSE) audio.

Result [out]

Receives a Boolean indicating the success or failure of the operation. See the remarks below.

Return Value

The return value is S_OK.

Remarks

On output, Result is set to VARIANT_FALSE if there is no current camera, a problem is detected with the

connection, or the current camera does not support audio. Otherwise it is set to VARIANT_TRUE. A value of

VARIANT_TRUE provides no guarantee that the camera acted (or will act) upon the command.

Note: Audio is enabled or disabled only with respect to the CVVideo control instance. It is essentially a “mute”

control for the CVVideo control. Recording of audio is unaffected.

EnableAudio is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

EnableAudio nominally conducts a synchronous message exchange with the server. During this message exchange

Windows messages will continue to be dispatched.

ICVVideo::EndPosition

The EndPosition method returns the end date/time of the current playback interval.

Syntax (C++)

HRESULT EndPosition(

 [out] DATE *Value

);

Parameters

Value [out]

Receives the end date/time, or zero if no playback interval has been established.

Return Value

The return value is S_OK.

Remarks

EndPosition is associated with the Playback context, i.e. it can only be usefully invoked after a playback interval has

been established.

ICVVideo::ExportClip

The ExportClip method exports the current playback interval to a file.

102

Syntax (C++)

HRESULT ExportClip(

 [in] BSTR FilePathName)

);

Parameters

FilePathName [in]

Path to the file to which the video clip should be exported.

Return Value

The return value is S_OK.

Remarks

ExportClip displays a (modal) dialog box that provides feedback on the progress of the operation. If the client

application wants programmatic progress information, it may listen for the OnExportProgress event.

ExportClip is associated with the Playback context, i.e. it can only be usefully invoked after a playback interval has

been established.

ExportClip is a best-effort method providing no indication of whether or when the clip is actually exported.

Reasons for failure include there being no current camera or no current playback clip, an invalid file path, or an

inability to write to the specified file.

ICVVideo::ExportWizard

The ExportWizard method presents a user interface that allows the user to choose part (or all) of the current

playback interval for export, and a file name to which it should be exported. ExportWizard then exports the

chosen video to the specified file.

Syntax (C++)

HRESULT ExportWizard(

);

Parameters

The ExportWizard method has no parameters.

Return Value

The return value is S_OK.

Remarks

If the client application wants programmatic progress information it may listen for the OnExportProgress event.

ExportWizard is associated with the Playback context, i.e. it can only be usefully invoked after a playback interval

has been established.

ExportWizard is a best-effort method providing no indication of whether any errors occurred in the export.

Reasons for failure include there being no current camera or no current playback clip, or an inability to write to the

chosen file.

103

ICVVideo::FPS

The FPS property determines the frames per second of the video stream associated with the next camera

connection. Changing the value of this property does not affect the current connection (if any). The default value

is 4.0.

Syntax (C++)

HRESULT get_FPS(

 [out] DOUBLE *Result

);

HRESULT put_FPS(

 [in] DOUBLE NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The frames per second to use with the next camera connection.

Return Value

The return value is S_OK.

ICVVideo::Focus

The Focus method instructs the current camera to set its focus speed, if the camera supports this feature.

Syntax (C++)

HRESULT Focus(

 [in] SHORT FocusSpeed

);

Parameters

FocusSpeed [in]

Focus speed, the units of which are camera-dependent, but the range of which is always [-1000, +1000]. (The

value is clamped into this range.)

Return Value

The return value is S_OK.

Remarks

Focus is associated with the Connection context, i.e. it only makes sense to call it when there is a current camera.

Focus is a best-effort method providing no indication of whether or when the camera actually executes the

command.

ICVVideo::GetCameraInfo

The GetCameraInfo method retrieves information about a particular camera administered by a particular server.

Syntax (C++)

HRESULT GetCameraInfo(

104

 [in] SHORT Camera,

 [out] BSTR *Name,

 [out] UINT *Status

);

Parameters

Camera [in]

Camera identifier (one-based index).

Name [out]

Receives a camera name, or is set to the empty string if an error occurs.

Status [out]

Receives a camera status, or is set to zero if an error occurs.

Return Value

The return value is S_OK.

Remarks

GetCameraInfo is associated with the General context, meaning that it may be usefully called at any time.

However, its behavior is essentially unreliable when the CVVideo control is in the Connection context, so client

applications should not call this method while there is a current camera.

When not in the Connection context, this method uses the current values of the Server, Username, and Password

properties. Note, however, that the returned camera name and status are not necessarily current. The CVVideo

control caches this camera information, and the cache is only cleared by (a) calling Disconnect or Connect or (b)

resetting the Server property (even to the same value).

The camera status is a bit field with the following status bits:

Bit Position Meaning when Set

0 (least significant) Scheduled recording is active.

1 External alarm detected, external alarm recording is active.

2 Motion recording is active.

3 Motion has been detected.

4 Camera is a PTZ camera.

5 Prealarm recording is active.

6 Not connected to server (video acquisition failure).

7 Tour is enabled.

8 Camera is inactive/stopped (no attempt by server to acquire video), though it may be
enabled.

9 Camera supports audio.

10 Camera is an IP camera.

11 Camera is an ACTI model.

13 Camera is transitioning to or from the stopped state. Bit 8 is the intended next state
(0 = started, 1 = stopped), but the camera is not there yet.

14 Camera is set to use Digital PTZ.

15 Recording failure.

16 Camera preset and/or preset name changed.

105

GetCameraInfo may conduct a synchronous message exchange with the server. During this message exchange,

Windows messages will continue to be dispatched.

ICVVideo::GetFilePathName

The GetFilePathName method presents a standard file chooser dialog with JPEG (.JPG) as the default file type, and

returns the chosen file path (if any).

Syntax (C++)

HRESULT GetFilePathName(

 [in] BSTR FileTypes,

 [out] BSTR *File

);

Parameters

FileTypes [in]

A file filter specification such as that used in the OPENFILENAME structure of the Win32 API.

File [out]

Receives the path to the chosen file, or the empty string if the user cancels the dialog.

Return Value

The return value is S_OK.

Remarks

GetFilePathName is associated with the General context, meaning that it can be usefully called at any time.

ICVVideo::GetNumberOfCameras

The GetNumberOfCameras method retrieves the number of cameras on a particular server.

Syntax (C++)

HRESULT GetNumberOfCameras(

 [out] SHORT *Result

);

Parameters

Result [out]

Receives the number of cameras, or is set to zero in the case of an error. See the remarks below.

Return Value

The return value is S_OK.

Remarks

GetNumberOfCameras is associated with the General context, meaning that it may be usefully called at any time.

However, its behavior is essentially unreliable when the CVVideo control is in the Connection context, so client

applications should not call this method while there is a current camera.

When not in the Connection context, this method uses the current values of the Server, Username, and Password

properties. Note, however, that the returned number of cameras is not necessarily current. The CVVideo control

http://msdn.microsoft.com/en-us/library/windows/desktop/ms646839(v=vs.85).aspx

106

caches this camera information, and the cache is only cleared by (a) calling Disconnect or Connect or (b) resetting

the Server property (even to the same value).

GetNumberOfCameras may conduct a synchronous message exchange with the server. During this message

exchange, Windows messages will continue to be dispatched.

ICVVideo::GetViewOption

The GetViewOption method returns the current viewing option (letterbox or stretch to fit).

Syntax (C++)

HRESULT GetViewOption(

 [out] ViewOptions *Option

);

Parameters

Option [out]

Receives the current viewing option. See ViewOptions.

Return Value

The return value is S_OK.

Remarks

GetViewOption is associated with the General context, meaning that it can be usefully called at any time.

ICVVideo::GotoPreset

The GotoPreset method instructs the current camera to move (pan, tilt, zoom, focus, and/or iris) to a preset

location.

Syntax (C++)

HRESULT GotoPreset(

 [in] SHORT Preset

);

Parameters

Preset [in]

Camera preset number.

Return Value

The return value is S_OK.

Remarks

GotoPreset is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

GotoPreset is a best-effort method providing no indication of whether or when the camera actually executes the

command.

ICVVideo::HasAudio

The read-only HasAudio property indicates whether the current camera supports audio. The value of this property

is VARIANT_FALSE when there is no current camera.

107

Syntax (C++)

HRESULT get_HasAudio(

 [out] VARIANT_BOOL *Result

);

Parameters

Result [out]

Receives the current value of the property.

Return Value

The return value is S_OK.

ICVVideo::Iris

The Iris method instructs the camera to set its iris speed, if the camera supports this feature.

Syntax (C++)

HRESULT Iris(

 [in] SHORT IrisSpeed

);

Parameters

IrisSpeed [in]

Iris speed, the units of which are camera-dependent, but the range of which is always [-1000, +1000]. (The

value is clamped to this range.)

Return Value

The return value is S_OK.

Remarks

Iris is associated with the Connection context, i.e. it only makes sense to call it when there is a current camera.

Iris is a best-effort method providing no indication of whether or when the camera actually executes the

command.

ICVVideo::IsPTZ

The read-only IsPTZ property indicates whether the current camera supports pan-tilt-zoom control. The value of

this property is VARIANT_FALSE if there is no current camera.

Syntax (C++)

HRESULT get_IsPTZ(

 [out] VARIANT_BOOL *Result

);

Parameters

Result [out]

Receives the current value of the property.

Return Value

The return value is S_OK.

108

ICVVideo::PTZ

The PTZ method instructs the current camera to set its pan-tilt-zoom speeds, if these features are supported by

the camera.

Syntax (C++)

HRESULT PTZ(

 [in] SHORT PanSpeed,

 [in] SHORT TiltSpeed,

 [in] SHORT ZoomSpeed

);

Parameters

PanSpeed [in]

Pan speed, the units of which are camera-dependent, but the range of which is always [-1000, +1000]. (The

value is clamped to this range.)

TiltSpeed [in]

Tilt speed, the units of which are camera-dependent, but the range of which is always [-1000, +1000]. (The

value is clamped to this range.)

ZoomSpeed [in]

Zoom speed, the units of which are camera-dependent, but the range of which is always [-1000, +1000]. (The

value is clamped to this range.)

Return Value

The return value is S_OK.

Remarks

PTZ is associated with the Connection context, i.e. it only makes sense to call it when there is a current camera.

PTZ is a best-effort method providing no indication of whether or when the camera actually executes the

command.

ICVVideo::PTZRepeat

The PTZRepeat property determines whether the CVVideo control will repeat the most recent PTZ command once

per second.

Syntax (C++)

HRESULT get_PTZRepeat(

 [out] VARIANT_BOOL *Result

);

HRESULT put_PTZRepeat(

 [in] VARIANT_BOOL NewVal

);

Parameters

Result [out]

Receives the current value of the property.

109

NewVal [in]

Specifies whether to enable (VARIANT_TRUE) or disable (VARIANT_FALSE) the PTZ repetition feature.

Return Value

The return value is S_OK.

ICVVideo::Password

The Password property determines the user password to use in the next connection to a server/camera. Changing

this property has no effect on the current connection, if any.

Syntax (C++)

HRESULT get_Password(

 [out] BSTR *Result

);

HRESULT put_Password(

 [in] BSTR NewVal

);

Parameters

Result [out]

Receives the value of the property.

NewVal [in]

The user password to use in the next camera connection.

Return Value

The return value is S_OK.

ICVVideo::Playback

The Playback method sets up the current server (and/or current camera) for playback of video captured by the

current camera.

Syntax (C++)

HRESULT Playback(

 [in] DATE Start,

 [in] DATE End,

 [out] VARIANT_BOOL *Result

);

Parameters

Start [in]

The start date/time of the video to play back, in server local time. This parameter defines the beginning of the

playback interval.

End [in]

The end date/time of the video to play back, in server local time. This parameter defines the end of the

playback interval.

110

Result [out]

Not used.

Return Value

The return value is S_OK.

Remarks

Playback is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera. A successful execution of this method takes the CVVideo control into the Playback context.

Playback is a best-effort method providing no indication of whether or when the server/camera actually executes

the command.

If Start and End are not in server local time, specify the time zone by calling SetTimeZone() method.

ICVVideo::PlaybackRate

The PlaybackRate method instructs the server and/or current camera to adjust the rate of playback.

Syntax (C++)

HRESULT PlaybackRate(

 [in] DOUBLE Rate

);

Parameters

Rate [in]

Playback rate, where 1.0 is normal speed, 2.0 is double the speed, etc. Positive values less than 1.0 are slower

than normal speed. This value can’t be negative or zero.

Return Value

The return value is S_OK.

Remarks

PlaybackRate is associated with the Playback context, i.e. it can only be usefully called after a playback interval has

been established.

PlaybackRate is a best-effort method providing no indication of whether or when the server/camera actually

executes the command.

ICVVideo::Position

The Position method retrieves the current position (as a date/time) in the current playback interval.

Syntax (C++)

HRESULT Position(

 [out] DATE *CurrentPos

);

Parameters

CurrentPos [out]

Receives the current playback position, or a time in the distant past if an error occurs. See the remarks below.

111

Return Value

The return value is S_OK.

Remarks

The returned DATE will be in the distant past if there is no current playback or an error occurs.

Position is associated with the Playback context, i.e. it only makes sense to call it after a playback interval has been

established.

ICVVideo::Quality

The Quality property determines the video streaming quality. This is a technical parameter of the video encoding.

The range is zero (worst quality) to 100 (best quality). The default value is 100. The primary benefit of lowering

this value is reduced network bandwidth usage. Note that the BPS property (in the ICVVideo2 interface) provides a

different, more easily quantifiable means to this end.

This property only affects subsequent camera connections. Changing the value of this property has no effect on

the current connection, if any.

Syntax (C++)

HRESULT get_Quality(

 [out] SHORT *Result

);

HRESULT put_Quality(

 [in] SHORT NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The video streaming quality to use in the next camera connection.

Return Value

The return value is S_OK.

ICVVideo::SaveSnapshot

The SaveSnapshot method saves the current video frame to a file as a JPEG image.

Syntax (C++)

HRESULT SaveSnapshot(

 [in] BSTR Filename,

 [out] LONG *Result

);

Parameters

Filename [in]

The path to the output file.

112

Result [out]

Receives a CVVideo-internal status code indicating the success or failure of the operation. This value is zero if

successful, nonzero if an error occurs.

Return Value

The return value is S_OK.

Remarks

The SaveSnapshotScaled method is similar, but allows the client application to specify the pixel resolution of the

target image.

SaveSnapshot is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

ICVVideo::SaveSnapshotScaled

The SaveSnapshotScaled method saves the current video frame to a file as a JPEG image, with (optional) scaling of

the image.

Syntax (C++)

HRESULT SaveSnapshotScaled(

 [in] BSTR Filename,

 [in] SHORT Width,

 [in] SHORT Height,

 [out] LONG *Result

);

Parameters

Filename [in]

Path to the target file.

Width [in]

Image width in pixels. Specify -1 for the default.

Height [in]

Image height in pixels. Specify -1 for the default.

Result [out]

Receives a CVVideo-internal status code indicating the success or failure of the operation. This value is zero if

successful, nonzero if an error occurs.

Return Value

The return value is S_OK.

Remarks

Note: Calling this method with -1 for both the width and height is the same as calling the SaveSnapshot method.

SaveSnapshotScaled is associated with the Connection context, i.e. it only makes sense to call it when there is a

current camera.

113

ICVVideo::Seek

The Seek method instructs the server (and/or current camera) to seek to a particular position in the current

playback interval.

Syntax (C++)

HRESULT Seek(

 [in] DATE NewPos

);

Parameters

NewPos [in]

The target date/time, in server local time.

Return Value

The return value is S_OK.

Remarks

Seek is associated with the Playback context, meaning that it can only be called usefully after a playback interval

has been established.

Seek is a best-effort method providing no indication of whether or when the command is actually executed by the

server/camera.

If SetTimeZone() was called prior to making a playback request, NewPos should be in the same time zone format.

ICVVideo::Server

The Server property determines which CompleteView server is used in the next camera connection. This value

should be a host name, or an IP address in dotted-quad notation, or the string localhost. This property only affects

subsequent camera connections. Changing the value of this property has no effect on the current connection, if

any.

Syntax (C++)

HRESULT get_Server(

 [out] BSTR *Result

);

HRESULT put_Server(

 [in] BSTR NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The next server to connect to.

Return Value

The return value is S_OK.

114

ICVVideo::SetCameraOverlay

The SetCameraOverlay method instructs the server (and/or current camera) to adjust the overlay settings for the

current camera.

Syntax (C++)

HRESULT SetCameraOverlay(

 [in] SHORT CameraID,

 [in] BSTR Overlay,

 [in] VARIANT_BOOL ShowTimestamp,

 [in] VARIANT_BOOL ShowCameraName

);

Parameters

CameraID [in]

Not used.

Overlay [in]

Overlay text.

ShowTimestamp [in]

Whether to show (VARIANT_TRUE) or hide (VARIANT_FALSE) the timestamp in the overlay.

ShowCameraName [in]

Whether to show (VARIANT_TRUE) or hide (VARIANT_FALE) the camera name in the overlay.

Return Value

The return value is S_OK.

Remarks

SetCameraOverlay is associated with the Connection context, i.e. it only makes sense to call it when there is a

current camera.

SetCameraOverlay is a best-effort method providing no indication of whether or when the command is actually

executed by the server/camera.

ICVVideo::SetPreset

The SetPreset method instructs the server (and/or current camera) to set a particular preset on the current

camera. The preset become’s associated with the camera’s current “position” (pan, tilt, zoom, focus, and/or iris).

Syntax (C++)

HRESULT SetPreset(

 [in] SHORT Preset

);

Parameters

Preset [in]

Camera preset number, this value is zero-based

Return Value

The return value is S_OK.

115

Remarks

SetPreset is associated with the Connection context, i.e. it only makes sense to call it when there is a current

camera.

SetPreset is a best-effort method providing no indication of whether or when the server/camera actually executes

the command.

ICVVideo::SetViewOption

The SetViewOption method sets the current viewing option (stretching or letterbox).

Syntax (C++)

HRESULT SetViewOption(

 [in] ViewOptions Option

);

Parameters

Option [in]

New viewing option.

Return Value

The return value is S_OK.

Remarks

SetViewOption is associated with the General context, meaning that it can be usefully invoked at any time.

ICVVideo::ShowStatus

The ShowStatus property determines whether status text is shown when there is no video to display. The default

value is VARIANT_TRUE.

Syntax (C++)

HRESULT get_ShowStatus(

 [out] VARIANT_BOOL *Result

);

HRESULT put_ShowStatus(

 [in] VARIANT_BOOL NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

Whether to show (VARIANT_TRUE) or hide (VARIANT_FALSE) status text.

Return Value

The return value is S_OK.

ICVVideo::Start

The Start method instructs the server (and/or current camera) to start playback.

116

Syntax (C++)

HRESULT Start(

);

Parameters

The Start method has no parameters.

Return Value

The return value is S_OK.

Remarks

Start is associated with the Playback context, i.e. it only makes sense to call it after a playback interval has been

established. When the CVVideo control is in the Paused context, a successful invocation of Start causes it to leave

that context.

Start is a best-effort method providing no indication of whether or when the server/camera actually executes the

command.

ICVVideo::StartPosition

The StartPosition method returns the start of the current playback interval.

Syntax (C++)

HRESULT StartPosition(

 [out] DATE *Val

);

Parameters

Val [out]

Receives the playback start position, in server local time or specified time zone.

Return Value

The return value is S_OK.

Remarks

StartPosition is associated with the Playback context, meaning that it only makes sense to call it after a playback

interval has been established.

ICVVideo::StepBack

The StepBack method instructs the server (and/or current camera) to advance the video backward by one frame.

Syntax (C++)

HRESULT StepBack(

);

Parameters

The StepBack method has no parameters.

Return Value

The return value is S_OK.

117

Remarks

StepBack is associated with the Paused context, meaning that it only makes sense to call it while playback is

paused.

StepBack is a best-effort method giving no indication of whether or when the server/camera actually executes the

command.

ICVVideo::StepForward

The StepForward method instructs the server (and/or current camera) to advance the video forward by one frame.

Syntax (C++)

HRESULT StepForward(

);

Parameters

The StepForward method has no parameters.

Return Value

The return value is S_OK.

Remarks

StepForward is associated with the Paused context, meaning that it only makes sense to call it while playback is

paused.

StepForward is a best-effort method giving no indication of whether or when the server/camera actually executes

the command.

ICVVideo::Stop

The Stop method instructs the server (and/or current camera) to suspend (pause) playback.

Syntax (C++)

HRESULT Stop(

);

Parameters

The Stop method has no parameters.

Return Value

The return value is S_OK.

Remarks

Stop is associated with the Playback context, i.e. it only makes sense to call it after a playback interval has been

established. Furthermore, Stop will have no effect if playback has not been started via Start.

A successful execution of Stop takes the CVVideo control into the Paused context.

Stop is a best-effort method providing no indication of whether or when the server/camera actually executes the

command.

118

ICVVideo::Username

The Username property determines the user name to use in the next server/camera connection. This property only

affects subsequent connections. Changing the value of this property has no effect on the current camera

connection, if any.

Syntax (C++)

HRESULT get_Username(

 [out] BSTR *Result

);

HRESULT put_Username(

 [in] BSTR NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The user name to use in the next camera connection.

Return Value

The return value is S_OK.

ICVVideo2

Application developers should not implement this interface. The CVVideo control provides this functionality.

Note: In C++, all properties are retrieved by a method that is called by prepending get_ to the name of the

property. For example, if the property’s name is Password, then get_Password retrieves the property. Similarly,

writable properties are set by a method whose name is formed by prepending put_ to the name of the property,

e.g. put_Password.

The ICVVideo2 interface inherits from the ICVVideo interface, and has additional properties and methods

summarized in the following tables and described in the text that follows.

Property Description

BPS Maximum video streaming bitrate.

XResolution Video width.

YResolution Video height.

IsDigitalPTZ (read-only) Indicates whether camera is set to use Digital PTZ.

119

Method Description

GetServerTime Retrieves the server’s system time.

GetServerTimeZone Retrieves information about the server’s time zone.

GetSnapshot Writes a snapshot to an image buffer.

GetSnapshotScaled Writes a snapshot to an image buffer, with optional image scaling.

SearchVideo Retrieves information about the time intervals for which video exists.

SetTimeZone Sets the time zone for playback requests.

CheckFeature Checks if a particular product feature or version is supported.

SilentExport Exports the current playback interval to a file in AVI format without displaying
the export dialog.

CancelSilentExport Cancels the video export operation started by SilentExport API. Deletes the
partially exported video.

ICVVideo2::BPS

The BPS property determines the maximum bitrate for the video streaming associated with the next camera

connection. The default value is -1, meaning that the maximum bitrate is left up to the implementation. This

property only affects subsequent connections. Changing the value of this property has no effect on the current

camera connection, if any.

Syntax (C++)

HRESULT get_BPS(

 [out] LONG *Result

);

HRESULT put_BPS(

 [in] LONG NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The target bitrate for the next camera connection. Specify any non-positive integer to revert to the

implementation’s default.

Return Value

The return value is S_OK.

ICVVideo2::GetServerTime

The GetServerTime method retrieves the system time on the server identified by the Server property, using

credentials supplied by the Username and Password properties.

Syntax (C++)

HRESULT GetServerTime(

 [out] DATE *CurrentTimeLocal,

 [out] DATE *CurrentTimeUTC,

 [out] VARIANT_BOOL *Result

120

);

Parameters

CurrentTimeLocal [out]

Receives the server’s local time.

CurrentTimeUTC [out]

Receives the server’s time in UTC.

Result [out]

Receives a Boolean value indicating success (VARIANT_TRUE) or failure (VARIANT_FALSE) in retrieving the

server time.

Return Value

The return value is S_OK.

Remarks

GetServerTime is associated with the General context, meaning that it can be usefully called at any time. Note,

however, that its successful (and meaningful) execution depends on the values of the Server, Username, and

Password properties.

GetServerTime normally conducts a synchronous message exchange with the server. During this exchange,

Windows messages will continue to be dispatched.

ICVVideo2::GetServerTimeZone

The GetServerTimeZone method retrieves information about the time zone of the server identified by the Server

property, using credentials supplied by the Username and Password properties..

Syntax (C++)

HRESULT GetServerTimeZone(

 [out] LONG *OffsetSeconds,

 [out] BSTR *Name,

 [out] VARIANT_BOOL *Result

);

Parameters

OffsetSeconds [out]

Receives the server’s time zone offset from UTC, in seconds.

Name [out]

Receives the server’s time zone name (see Remarks).

Result [out]

Receives a Boolean value indicating success (VARIANT_TRUE) or failure (VARIANT_FALSE) in retrieving the

server time zone information.

Return Value

The return value is S_OK.

121

Remarks

GetServerTimeZone is associated with the General context, meaning that it can be usefully called at any time.

Note, however, that its successful (and meaningful) execution depends on the values of the Server, Username, and

Password properties.

GetServerTimeZone normally conducts a synchronous message exchange with the server. During this exchange,

Windows messages will continue to be dispatched.

NOTE: The value of the Name output will be in the Windows display language in use on the Recording Server

system. When the Recording Server runs as a Windows Service, the language for the SYSTEM account is used.

ICVVideo2::GetSnapshot

The GetSnapshot method writes the current video frame into a buffer.

Syntax (C++)

HRESULT GetSnapshot(

 [in] BSTR Filename,

 [out] VARIANT *Buffer,

 [out] LONG *Result

);

Parameters

Filename [in]

Reserved. Must be NULL.

Buffer [out]

Receives the snapshot image, as an array of bytes (VT_SAFEARRAY | VT_UI1).

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

GetSnapshot is associated with the Connection context, meaning that it only makes sense to call it while there is a

current camera.

ICVVideo2::GetSnapshotScaled

The GetSnapshotScaled method writes the current video frame into a buffer, with optional scaling of the image.

Syntax (C++)

HRESULT GetSnapshotScaled(

 [in] BSTR Filename,

 [in] SHORT Width,

 [in] SHORT Height,

 [out] VARIANT *Buffer,

 [out] LONG *Result

);

122

Parameters

Filename [in]

Reserved. Must be NULL.

Width [in]

Image width in pixels. Specify -1 for the default image width.

Height [in]

Image height in pixels. Specify -1 for the default image height.

Buffer [out]

Receives the snapshot image, as an array of bytes (VT_SAFEARRAY | VT_UI1).

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

Return Value

The return value is S_OK.

Remarks

Calling this method with width and height both equal to -1 is the same as calling GetSnapshot.

GetSnapshotScaled is associated with the Connection context, meaning that it only makes sense to call it while

there is a current camera.

ICVVideo2::SearchVideo

The SearchVideo method returns an indication of the times for which video exists from the current camera during

a particular time interval.

Syntax (C++)

HRESULT SearchVideo(

 [in] DATE Start,

 [in] DATE End,

 [out] VARIANT *ClipStart,

 [out] VARIANT *ClipEnd,

 [out] VARIANT_BOOL *Result

);

Parameters

Start [in]

A date/time value giving the beginning of the temporal range to search, in client local time.

End [in]

A data/time value giving the end of the temporal range to search, in client local time.

123

ClipStart [out]

Receives a safe array of DATE (VT_ARRAY | VT_DATE). This array contains the start timestamps for each “clip”

found by the search. The ith element of the array contains the start time of a clip, whose end time is the ith

element of ClipEnd.

ClipEnd [out]

Receives a safe array of DATE (VT_ARRAY | VT_DATE). This array contains the end timestamps for each “clip”

found by the search. The ith element of the array contains the end time of the clip whose start time is the ith

element of ClipStart.

Result [out]

Receives a Boolean value indicating whether the search was successful. Reasons for failure include not being

connected to a camera, or a problem with the connection. Note that a search returning no clips (i.e. returning

empty ClipStart and ClipEnd arrays) may still have been a successful search.

Return Value

The return value is S_OK.

Remarks

SearchVideo returns time intervals indicating the presence of video. More precisely, it returns a sequence of n

time intervals [s1, t1], [s2, t2], … [sn, tn] such that

𝑠𝑖 ≤ 𝑡𝑖 for each 𝑖 ∈ {1, … 𝑛}, i.e. each interval is non-empty;

𝑡𝑖 < 𝑠𝑖+1 for each 𝑖 ∈ {1, … , 𝑛 − 1}, i.e. the intervals are sorted and have non-empty spacing;

𝑠1 ≥ 𝑆𝑡𝑎𝑟𝑡 and 𝑡𝑛 ≤ 𝐸𝑛𝑑; i.e. the results are limited to the requested range;

there exists video from the current camera for all 𝑡 ∈ ⋃[𝑠𝑖 , 𝑡𝑖]; and

𝑛

𝑖=1

if 𝑡 ∈ [𝑆𝑡𝑎𝑟𝑡, 𝐸𝑛𝑑] ∩ ~ ⋃[𝑠𝑖 , 𝑡𝑖]

𝑛

𝑖=1

, then the current camera has no video for time 𝑡.

All times returned in ClipStart and ClipEnd are in client local time. If Start and End are not in client local time,

specify the time zone by calling SetTimeZone() method in which case, ClipStart and ClipEnd will be in the same time

zone as Start and End.

SearchVideo is associated with the Connection context, meaning that it only makes sense to call it while there is a

current camera.

SearchVideo normally performs a synchronous message exchange with the server. During this exchange Windows

messages will continue to be dispatched.

ICVVideo2::XResolution

The XResolution property determines the x-resolution (video width) to use in the next camera connection. The

default value is -1, meaning the default width. This property only affects subsequent connections. Changing the

value of this property does not affect the current camera connection, if any.

124

Syntax (C++)

HRESULT get_XResolution(

 [out] LONG *Result

);

HRESULT put_XResolution(

 [in] LONG NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The x-resolution (video width) to use in the next camera connection.

Return Value

The return value is S_OK.

ICVVideo2::YResolution

The YResolution property determines the y-resolution (video height) to use in the next camera connection. The

default value is -1, meaning the default height. This property only affects subsequent connections. Changing the

value of this property does not affect the current camera connection, if any.

Syntax (C++)

HRESULT get_YResolution(

 [out] LONG *Result

);

HRESULT put_YResolution(

 [in] LONG NewVal

);

Parameters

Result [out]

Receives the current value of the property.

NewVal [in]

The y-resolution (video height) to use in the next camera connection.

Return Value

The return value is S_OK.

ICVVideo2::IsDigitalPTZ

The read-only IsDigitalPTZ property indicates whether the current camera supports digital PTZ protocol. The value

of this property is VARIANT_FALSE if there is no current camera.

Syntax (C++)

HRESULT get_IsDigitalPTZ(

 [out] VARIANT_BOOL *Result

);

125

Parameters

Result [out]

Receives the current value of the property.

Return Value

The return value is S_OK.

ICVVideo2:SetTimeZone

The SetTimeZone method sets the time zone from which all playback requests will be made.

Syntax (C++)

HRESULT SetTimeZone (

 [in] TimeZoneType TimeZoneType

);

Parameters

TimeZoneType [in]

Time zone type. See TimeZoneType.

Return Value

The return value is S_OK.

Remarks

SetTimeZone is associated with the General context, meaning that it can be usefully invoked at any time but prior

to making a playback request.

ICVVideo2::CheckFeature

The SilentExport method exports the current playback interval to a file.

Syntax (C++)

HRESULT CheckFeature(

 [in] BSTR FeatureKeyString

 [out] VARIANT_BOOL* Result

);

Parameters

FeatureKeyString [in]

A particular product feature or version of the CompleteView server.

Result [out]

Receives VARIANT_FALSE if the requested feature is not present, otherwise VARIANT_TRUE.

Return Value

The return value is S_OK.

Remarks

The API should be used after the connection to the CompleteView server has been established successfully.

126

ICVVideo2::SilentExport

The SilentExport method exports the current playback interval to a file.

Syntax (C++)

HRESULT SilentExport(

 [in] BSTR FilePathName

 [out] VARIANT_BOOL* Result

);

Parameters

FilePathName [in]

Path to the file to which the video clip should be exported.

Result [out]

Receives VARIANT_FALSE if the export operation fails immediately due to no camera, no video, invalid export

interval or empty FilePathName parameter.

Return Value

The return value is S_OK.

Remarks

SilentExport does not display a dialog box that provides the feedback on the progress of the export operation.

However, if the client application wants programmatic progress information, it may listen for the

OnExportProgress event.

SilentExport is associated with the Playback context, i.e. it can only be usefully invoked after a playback interval

has been established.

SilentExport is a best-effort method providing no indication of whether or when the clip is actually exported.

Reasons for failure include there being no current camera or no current playback clip, an invalid file path, or an

inability to write to the specified file.

ICVVideo2::CancelSilentExport

The CancelSilentExport method cancels the export operation initiated by client using the SilentExport API.

Syntax (C++)

HRESULT CancelSilentExport();

Parameters

None.

Return Value

The return value is S_OK.

Remarks

The CancelSilentExport API terminates the export operation which is started using SilentExport API only. This API

should not be used to cancel the export operation, which is started using ExportClip or ExportWizard.

CancelSilentExport is innocuous and will have no effect if used without calling SilentExport. This API is associated

with the Playback context.

127

If the export operation initiated using the SilentExport is not completed, CancelSilentExport will delete the partially

exported video clip.

ICVVideo3

Application developers should not implement this interface. The CVVideo control provides this functionality.

Note: In C++, all properties are retrieved by a method that is called by prepending get_ to the name of the

property. For example, if the property’s name is Password, then get_Password retrieves the property. Similarly,

writable properties are set by a method whose name is formed by prepending put_ to the name of the property,

e.g. put_Password.

The ICVVideo3 interface inherits from the ICVVideo2 interface, and has additional properties and methods

summarized in the following tables and described in the text that follows:

Property Description

PtzSupports (read-only) PTZ capabilities that this camera supports.

Method Description

ProcessIFrameOnly Enables the ActiveX control to process I-Frames only.

ForceToSeekTime Enables playback from a desired position within specified playback interval.

SetTimeZoneName Allows the API clients to specify custom timezone name.

SetDewarpOptions Allows the API clients to specify dewarp/fisheye options pertaining to lens
such as orientation, profile, type, co-ordinates of center, radius and any data
pertaining to curvature.

SetLensDewarpType Allows the API clients to specify type of fisheye view for the video renderer.

SetPresetName Allows the API clients to specify a custom preset name.

GetPresetNames Allows API clients to retrieve existing preset names in order.

GetDewarpPTZValues Allows API clients to retrieve existing fisheye PTZ values with video renderer.

SetDewarpPTZValues Allows API clients to retrieve existing fisheye PTZ values with video renderer.

SetQuickTrackOptions Allows API clients to set Quick Track options.

StartQuickTrackRecording Starts quick track recording asynchronously.

StopQuickTrackRecording Stops on going quick track recording.

StartThumbnailSearch Starts thumbnail search asynchronously.

EndThumbnailSearch Stops on going thumbnail search operation.

SetClientCameraOverlay Sets a client overlay based on the overlay type and in the position defined by
the overlay position.

SetServerCameraOverlay Instructs the currently connected sever to change the overlay parameters for
the camera in the current CVVideo instance.

GotoHomePreset Moves camera to a given home preset or the active home preset.

SetTranscoders Sets the H.264 and MPEG4 decoder type.

SetGen2AnalogImageSettings Sets the image settings for GenII cameras

SetVideoRenderer Sets the video renderer option.

SetVideoCategories Sets the video categories of clips for playback.

EnablePresetTour Enables or disables preset tour on a PTZ camera.

SetMousePtrPtz Enable or disable mouse based ptz. (AMAG requested)

EnableTls Enable or disable TLS communitactions to and from Recording Server.

StartLocalRecording Starts local recording

StopLocalRecording Stops local recording

128

ICVVideo3::ProcessIFrameOnly

The ProcessIFrameOnly method enables the ActiveX control to process I-Frames only. This only applies to video

playback.

Syntax (C++)

HRESULT ProcessIFrameOnly(

 [in] VARIANT_BOOL Enable

);

Parameters

Enable [in]

VARIANT_TRUE indicates the renderer to process I-Frames only and skip P-Frames.

VARIANT_FALSE disabled I-Frame only processing.

Return Value

The return value is S_OK.

Remarks

ProcessIFrameOnly is associated with the Connection context. Meaning this API will take effect only after

successful connection to the Recording Server.

ICVVideo3::ForceToSeekTime

The ForceToSeekTime method enables playback from a desired position within specified playback interval. The

playback interval is specified by the ‘Start’ and ‘End’ times. The ‘Seek’ time must be between the ‘Start’ and ‘End’.

Syntax (C++)

HRESULT ForceToSeekTime (

 [in] DATE Start,

 [in] DATE End,

 [in] DATE Seek,

 [out,retval] VARIANT_BOOL *RetVal

);

Parameters

Start [in]

Indicates beginning time of a playback interval.

End [in]

Indicates end time of a playback interval.

Seek [in]

Indicates position time at which the playback is desired to resume.

Must be between Start and End

Result [out]

Receives a result code indicating the success or failure of the operation. A value of zero indicates success. Any

other value is an internal implementation-defined error code and indicates failure.

129

Return Value

The return value is S_OK.

Remarks

ForceToSeekTime is associated with the Connection context, i.e. it only makes sense to call it when there is a

current camera. ForceToSeekTime is a best-effort method providing no indication of whether or when the

server/camera actually executes the command. If Start and End are not in server local time, specify the time zone

by calling SetTimeZone method.

ICVVideo3::SetTimeZoneName

The SetTimeZoneName method allows the API clients to specify custom timezone name. This is the timezone’s

standard name. See Remarks.

Syntax (C++)

HRESULT SetTimeZoneName(

 [in] BSTR TimeZoneName

);

Parameters

TimeZoneName [in]

Time zone standard name (see Remarks).

Return Value

The return value is S_OK.

Remarks

Time zones can either be set using the SetTimeZoneName method or using the SetTimeZone method. The

methods are mutually exclusive and it is not required that both be used. Selecting one of the two methods is

sufficient.

NOTE: It is strongly recommended to use a language-invariant time zone name, such as the key name used to

define the time zone in the Windows Registry. Doing so ensures correct operation in environments that may use

multiple operating system languages in use across the deployment. In the Win32 programming API, this would

correspond to the TimeZoneKeyName value in the DYNAMIC_TIME_ZONE_INFORMATION data structure.

ICVVideo3::SetDewarpOptions

The SetDewarpOptions method allows the API clients to specify dewarp/fisheye options pertaining to lens such as

orientation, profile, type, co-ordinates of center, radius and any data pertaining to curvature.

Syntax (C++)

HRESULT SetDewarpOptions (

 [in] struct DewarpOptions Options

);

Parameters

Options [in]

Dewarp options, see DewarpOptions data structure.

130

Return Value

The return value is S_OK.

Remarks

SetDewarpOptions updates the fisheye options with the video renderer. A connection update is required for these

dewarp options to take effect. This method is associated with Connection context and an explicit call to Connect is

required after SetDewarpOptions is called.

ICVVideo3::SetLensDewarpType

The SetLensDewarpType method allows the API clients to specify type of fisheye view for the video renderer.

Syntax (C++)

HRESULT SetLensDewarpType (

 [in] enum DewarpViewType dewarpViewType

);

Parameters

dewarpViewType [in]

 Type of fisheye view such as rectangular (DVT_RECT), quad (DVT_QUAD), dual panorama

(DVT_PANODUAL), etc. See DewarpViewType enumeration.

Return Value

The return value is S_OK.

Remarks

SetLensDewarpType updates the fisheye view type with the video renderer. A connection update to the Recording

Server is required for the view type to take effect. This method is associated with Connection context and an

explicit call to Connect is required after SetLensDewarpType is called.

ICVVideo3::SetPresetName

The SetPresetName method allows the API clients to specify a custom preset name.

Syntax (C++)

HRESULT SetPresetName (

 [in] INT PresetIndex,

 [in] BSTR PresetName

);

Parameters

PresetIndex [in]

One based preset index.

PresetName [in]

 Desired name of the preset

Return Value

The return value is S_OK.

131

Remarks

The SetPresetName method is “best effort” in the sense that the client application is given no indication of the

success or failure.

ICVVideo3::GetPresetNames

The GetPresetNames method allows API clients to retrieve existing preset names for the connected camera in the

current renderer.

Syntax (C++)

HRESULT GetPresetNames (

 [out] VARIANT* PresetNames,

 [out] BSTR* Error,

 [out,retval] VARIANT_BOOL* Result

);

Parameters

PresetNames [in]

List of preset names, if present, ordered by id.

Error [out]

 Error description for error while retrieving preset names.

Result [out]

 VARIANT_TRUE if success.

Return Value

The return value is S_OK.

Remarks

If there are presets configured with no names on Recording Server, PresetNames will contain empty preset names.

This is to notify the API client, the number of presets configured for this camera. This method is associated with

Connection context.

ICVVideo3::GetDewarpPTZValues

The GetDewarpPTZValues method allows API clients to retrieve existing fisheye PTZ values with video renderer.

Syntax (C++)

HRESULT GetDewarpPTZValues (

 [out] VARIANT* PanValues,

 [out] VARIANT* TiltValues,

 [out] VARIANT* ZoomValues,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

PanValues [out]

List of floating point pan values for four quadrants in the order – top-left, top-right, bottom-left and

bottom-right.

132

TiltValues [out]

List of floating point tilt values for four quadrants in the order - top-left, top-right, bottom-left and

bottom-right.

ZoomValues [out]

List of floating point zoom values for four quadrants in the order - top-left, top-right, bottom-left and

bottom-right.

Result[out]

 VARTIANT_TRUE if success.

Return Value

The return value is S_OK.

ICVVideo3::SetDewarpPTZValues

The SetDewarpPTZValues method allows API clients to set fisheye PTZ values for user with the video renderer.

Syntax (C++)

HRESULT SetDewarpPTZValues (

 [in] VARIANT PanValues,

 [in] VARIANT TiltValues,

 [in] VARIANT ZoomValues,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

PanValues [in]

Input list of floating point pan values for four quadrants in the order - top-left, top-right, bottom-left and

bottom-right.

TiltValues [in]

Input list of floating point tilt values for four quadrants in the order - top-left, top-right, bottom-left and

bottom-right.

ZoomValues [in]

Input list of floating point zoom values for four quadrants in the order - top-left, top-right, bottom-left and

bottom-right.

Result[out]

 VARIANT_TRUE if success.

Return Value

The return value is S_OK.

133

Remarks

SetDewarpPTZValues updates the PTZ values with the video renderer. A connection update to the Recording

Server is required for the view type to take effect. This method is associated with Connection context and an

explicit call to Connect is required after SetDewarpPTZValues is called.

ICVVideo3::SetQuickTrackOptions

The SetQuickTrackOptions method allows API clients to set QuickTrack options for QuickTrack recording.

Syntax (C++)

HRESULT SetQuickTrackOptions (

 [in] BSTR Server,

 [in] INT Camera,

 [in] BSTR Username,

 [in] BSTR Password,

 [in] enum CompressionType CompressionType,

 [in] INT Width,

 [in] INT Height,

 [in] INT FrameRate,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

Server [in]

QuickTrack Server hostname / IP address.

Camera [in]

Camera identifier (one-based index) of an existing QuickTrack camera on a QuickTrack Server.

Username [in]

QuickTrack Server username.

Password[in]

 QuickTrack Server password.

CompressionType [in]

 Compression type, see CompressionType enumeration.

Width [in]

Image width in pixels.

Height [in]

Image height in pixels.

FrameRate [in]

 Frames per second for QuickTrack Recording.

Error [out]

 Error while starting the QuickTrack recording, if any.

134

Result [out, retval]

 VARIANT_TRUE is QuickTrack recording starts successfully.

Return Value

The return value is S_OK.

ICVVideo3::StartQuickTrackRecording

This method starts quick track recording asynchronously.

Syntax (C++)

HRESULT StartQuickTrackRecording (

 [in] BSTR RecordingServer,

 [in] INT RecordingCamera,

 [in] BSTR Username,

 [in] BSTR Password,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

RecordingServer [in]

Recording Server hostname / IP address.

RecordingCamera [in]

Camera index on Recording Server.

Username [in]

Recording Server user name.

Password [in]

 Recording Server password.

Error [out]

 Error while starting the QuickTrack recording, if any.

Result [out, retval]

 VARIANT_TRUE if QuickTrack recording starts successfully.

Return Value

The return value is S_OK.

ICVVideo3::StopQuickTrackRecording

This method stops on going quick track recording. It has no effect if quick track recording is not in progress.

Syntax (C++)

HRESULT StopQuickTrackRecording (

);

Parameters

The StopQuickTrackRecording method has no parameters.

135

Return Value

The return value is S_OK.

ICVVideo3:: StartThumbnailSearch

This method starts a thumbnail search.

Syntax (C++)

HRESULT StartThumbnailSearch (

 [in] DATE Start,

 [in] DATE End,

 [in] INT Width,

 [in] INT Height,

 [in] INT Quality,

 [in] BSTR TimeZoneStandardName,

 [in] UINT Interval,

 [out] INT* ThumbnailCount,

 [out] BSTR* Error,

 [out, retval] VARIANT_BOOL *RetVal

);

Parameters

Start [in]

Start time for search operation.

End [in]

End time for the search operation

Width [in] and Height[in]

Resolution for result thumbnails. -1 indicates original resolution

Quality [in]

Quality of the thumbnail. The range is zero (worst quality) to 100 (best quality).

TimeZoneStandardName [in]

 Desired time zone standard name (see Remarks)

Interval [in]

 Interval in seconds for thumbnail search.

ThumbnailCount [in]

 Desired thumbnail count.

Error [out]

 Error while starting the Thumbnail search.

Result [out, retval]

 VARIANT_TRUE if search starts successfully.

136

Return Value

The return value is S_OK.

Remarks

It is strongly recommended to use a language-invariant time zone name, rather than a localized time zone name,

for the TimeZoneStandardName input value.

ICVVideo3:: EndThumbnailSearch

This method stops an ongoing thumbnail search operation. It has no effect if thumbnail search is not in progress.

Syntax (C++)

HRESULT EndThumbnailSearch (

);

Parameters

The EndThumbnailSearch method has no parameters.

Return Value

The return value is S_OK.

ICVVideo3:: SetClientCameraOverlay

This method sets a client overlay based on the overlay type and in the position defined by the overlay position. The

camera for this operation is the camera in the current CVVideo instance.

Syntax (C++)

HRESULT SetClientCameraOverlay(

[in] enum VideoOverlay OverlayType,

[in] enum VideoOverlayPosition Position,

[in] BSTR OverlayText,

[out] BSTR *Error,

[out, retval] VARIANT_BOOL *Result

);

Parameters

OverlayType [in]

Video overlay type. See VideoOverlay enumeration.

Position [in]

Video overlay position. See VideoOverlayPosition enumeration.

OverlayText [in]

Text to output on the overlay. For user overlay types this value can be set to a custom text string with a

maximum length of 64. For any other type of overlay this value can be an empty string. If it is not an empty string

and the overlay is not of type user, then the string will be ignored.

Error [out]

 Error while requesting the Client camera overlay.

 Result [out, retval]

 VARIANT_TRUE if overlay was set successfully.

137

Return Value

The return value is S_OK.

ICVVideo3:: SetServerCameraOverlay

The SetServerCameraOverlay method instructs the currently connected sever to change the overlay parameters for

the camera in the current CVVideo instance.

Syntax (C++)

HRESULT SetServerCameraOverlay(

 [in] BSTR OverlayText,

 [in] VARIANT_BOOL ShowTimeStamp,

 [in] VARIANT_BOOL ShowCameraName,

 [in] VARIANT_BOOL ShowStreamProperties,

 [out, retval] VARIANT_BOOL *Result

);

Parameters

OverlayText [in]

Overlay text. A null value or an empty string clears the overlay text.

ShowTimeStamp [in]

A Boolean that specifies whether to include timestamps in the overlay.

ShowCameraName [in]

A Boolean that specifies whether to include the camera name in the overlay.

ShowStreamProperties [in]

A Boolean that specifies whether to include camera stream properties to the server in the overlay.

Result [out, retval]

 VARIANT_TRUE if overlay call was successful.

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

SetServerCameraOverlay is a best-effort method providing no indication of whether or when the server actually

executes the command. In CV Server versions prior to 5.x the SetCameraOverlay method was used to set text,

timestamp and camera name overlays. That method is deprecated and it is recommended to use the

SetServerCameraOverlay method instead. This method also takes a parameter for stream properties. For versions

before 5.x this parameter will have no effect on the overlay.

ICVVideo3:: PtzSupports

The read-only PtzSupports property indicates all the PTZ capabilities the current camera’s selected PTZ driver

supports. The value of this property is a bitwise-OR combination of the PTZ support codes as shown below.

Bit Position Meaning when Set

0 Can pan left and right

138

1 Can set the pan speed

2 Can tilt up and down

3 Can set the tilt speed

4 Can zoom in and out

5 Can set the zoom speed

6 Can open and close iris

7 Can set the iris speed

8 Can focus near and far

9 Can set the focus speed

10 Can enable auto-iris

11 Can enable auto-focus

12 Can show and set presets

13 Can soft-reset camera

14 Can select a monitor (applies to serial PTZ protocols)

15 Indicates that this is an IP PTZ protocol

16 Can center on a particular (x,y) co-ordinate

17 Can quick zoom through mouse wheel

Syntax (C++)

HRESULT get_PtzSupports(

 [out] INT *Result

);

ICVVideo3::GotoHomePreset

The GotoHomePreset method instructs the current camera to move (pan, tilt, zoom, focus, and/or iris) to a

predefined home preset location.

Syntax (C++)

HRESULT GotoHomePreset (

 [in, defaultvalue(-1)] SHORT presetIndex

);

Parameters

presetIndex [in]

This is the home preset index. For example, if a camera has 4 home presets configured, this input could be 1,2,3 or

4. The Recording Server will move the camera to the preset index associated with this home preset. If a preset is

not provided, the Recording Server will move the camera to the current active home preset.

Return Value

The return value is S_OK.

Remarks

GotoHomePreset is associated with the Connection context, i.e. it only makes sense to call it when there is a

current camera.

GotoHomePreset is a best-effort method providing no indication of whether or when the camera actually executes

the command.

139

ICVVideo3:: SetTranscoders

The SetTranscoders method sets the H.264 and MPEG4 decoder option for the camera in the current CVVideo

instance.

Syntax (C++)

HRESULT SetTranscoders(

 [in] enum Transcoder H264Decoder,

 [in] enum Transcoder Mpeg4Decoder);

Parameters

H264Decoder [in]

H.264 decoder type. See Transcoder enum.

Mpeg4Decoder [in]

MPEG4 decoder type. See Transcoder enum.

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

SetTranscoders must be called before making live view or playback calls. If this call is not made, the server will

default to FFMPEG.

ICVVideo3:: SetGen2AnalogImageSettings

The SetGen2AnalogImageSettings method sets the analog image settings for the camera in the current CVVideo

instance.

Syntax (C++)

HRESULT SetGen2AnalogImageSettings(VARIANT videoProps, VARIANT

videoPropValues, BSTR *error, VARIANT_BOOL *result);

Parameters

videoProps [in]

Array of Gen II video properties where each property is of type int and is one of the below values.

enum VideoProcProperty : int
{

 Brightness = 0,
 Contrast,
 Hue,
 Saturation,

Sharpness
}

videoPropValues [in]

Array of values of type int for the above properties. The range for sharpness is 0 to 15 and for all the

properties, the range is 0 to 255.

error [out]

Error message.

140

result [out]

Receives a result code indicating the success or failure of the operation

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

This call is applicable for only Gen II analog cameras and require camera to be active for the operation.

ICVVideo3:: SetVideoRenderer

The SetVideoRenderer method sets the video renderer option for the camera in the current CVVideo instance.

Syntax (C++)

HRESULT SetVideoRenderer(

 [in] enum VideoRendererOption option);

Parameters

option [in]

Video renderer type. See VideoRendererOption enum.

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

SetVideoRenderer must be called before making live view or playback calls. If this call is not made, the server will

default to Direct 2D/3D.

ICVVideo3::SetVideoCategories

The SetVideoCategories method sets the video categories of all the clips for playback in the current CVVideo

instance.

Syntax (C++)

HRESULT SetVideoCategories(

 [in] INT videoCategories);

Parameters

videoCategories [in]

Two’s exponent of VideoCategory enum value of each clip bitwise OR’ed together.

enum VideoCategory : int
{
 Scheduled = 0,
 Alarm = 1,
 Motion = 2,
 Exported = 3
};

141

Return Value

The return value is S_OK if the command was successfully sent to the server, S_FALSE if not connected to a server

or a problem occurs with the connection.

Remarks

By default scheduled, motion and alarm video categories are set in the CVVideo instance. To modify this default

value, SetVideoCategories must be called. For example, to play exported clips, SetVideoCategories must be called

with the export category set.

ICVVideo3::EnablePresetTour

The EnablePresetTour method can be used to enable or disable preset tour option on a PTZ camera.

Syntax (C++)

HRESULT EnablePresetTour([in] VARIANT_BOOL enablePreset, [out] BSTR *error,

[out, retval] VARIANT_BOOL *result);

Parameters

enablePreset [in]

Boolean indicating whether to enable (VARIANT_TRUE) or disable (VARIANT_FALSE) preset tour.

error [out]

Error message indicating the reason for failure of operation.

result [out, retval]

Returns a boolean value indicating the success (VARIANT_TRUE) or failure (VARIANT_FALSE) of the operation.

Return Value

The return value is S_OK.

ICVVideo3::SetMousePtrPtz

The SetMousePtrPtz method can be used to enable or disable mouse based PTZ control.

Syntax (C++)

HRESULT SetMousePtrPtz([in] VARIANT_BOOL control);

Parameters

control [in]

Boolean indicating whether to enable (VARIANT_TRUE) or disable (VARIANT_FALSE) mouse PTZ control.

Return Value

The return value is S_OK.

ICVVideo3::EnableTls

The EnableTls method can be used to enable or disable secure TCP communications to the Recording Server.

Syntax (C++)

HRESULT EnableTls([in] VARIANT_BOOL enable)

142

Parameters

enable [in]

Boolean indicating whether to enable (VARIANT_TRUE) or disable (VARIANT_FALSE) secure TCP

communications.

Return Value

The return value is S_OK

ICVVideo3::StartLocalRecording

This method allows to record video locally on client side.

Syntax (C++)

HRESULT StartLocalRecording([in] struct LocalRecordingArgs recordingArgs,

[out] BSTR *Error, [out, retval] VARIANT_BOOL *Result)

Parameters

recordingArgs [in]

 See LocalRecordingArgs structure.

Error [out]

Error message indicating the reason for failure of operation.

Result [out, retval]

Returns a boolean value indicating the success (VARIANT_TRUE) or failure (VARIANT_FALSE) of the operation.

Return Value

The return value is S_OK.

ICVVideo3::StopLocalRecording

This method stops video recording.

Syntax (C++)

HRESULT StopLocalRecording([out] BSTR *Error, [out, retval] VARIANT_BOOL

*Result)

Parameters

Error [out]

Error message indicating the reason for failure of operation.

Result [out, retval]

Returns a boolean value indicating the success (VARIANT_TRUE) or failure (VARIANT_FALSE) of the operation.

Return Value

The return value is S_OK.

143

ICVVideo4

Method Description

SetLanguage Sets current language for user facing strings.

ICVVideo4::SetLanguage

This method sets the current language. The default language is the system’s language if supported and if not,

English will be used. The localeName needs to be in RFC 4646’s Language-Region format.

Syntax (C++)

HRESULT SetLanguage([in] BSTR localeName)

Parameters

localeName [in]

String for the locale to be used.

Return Value

The return value is S_OK.

ICVVideo5

Property Description

StreamId Identifies the stream (one-based index).

ICVVideo5::StreamId

The StreamId property represents the stream identifier (a one-based index). This value determines the particular

camera stream to connect to on the next connection attempt.

If this property is not set before calling Connect then the Recording Server will automatically select the stream

based on the available camera streams and the requested width/height of the stream (if any).

Syntax (C++)

HRESULT get_StreamId(

 [out] INT *Result

);

HRESULT put_StreamId(

 [in] INT newVal

);

Parameters

Result [out]

Receives the current value of the property.

newVal [in]

Target stream identifier (one-based index) for the next connection attempt. Can also be set to <= 0 to

explicitly enable automatic stream selection.

144

Return Value

The return value is S_OK.

ICVVideo6

Property Description

Token The user access token to use when connecting to the server.

ProxyMode Whether or not proxy mode is enabled. Set to true if the server to connect to is a
proxy/gateway. Set to false if the server to connect to is a Recording Server. By
default, this property is set to false.

RecordingServerId The Recording Server GUID to send to the proxy/gateway server if proxy mode is
enabled. Required in order to use proxy mode so that the proxy/gateway server
knows where to forward server control messages.

Method Description

SetDecodeThreads Sets the number threads that will be used when decoding stream

ICVVideo6::Token

The Token property determines the user access token that is used on the next connection to a server. Changing

this property has no effect on the current connection (if any). The format of this token must be in JSON Web Token

(JWT) format (RFC7519). Use this as an alternative to the Username and Password properties.

Syntax (C++)

HRESULT get_Token(

 [out] BSTR *Result

);

HRESULT put_Token(

 [in] BSTR newVal

);

Parameters

Result [out]

Receives the current value of the property.

newVal [in]

User access token to use in the next connection to a server.

Return Value

The return value is S_OK.

ICVVideo6::ProxyMode

The ProxyMode property determines whether or not proxy mode is enabled. Set to true if the server to connect to

is a proxy/gateway. Set to false if the server to connect to is a Recording Server. By default, this property is set to

false.

145

If this property is changed and there is an active connection, then the controller will attempt a reconnection. If the

reconnection attempt fails then double-check the server address and the value of the Recording Server GUID

property (if applicable) or manually reconnect.

Syntax (C++)

HRESULT get_ProxyMode(

 [out] VARIANT_BOOL *result

);

HRESULT put_ProxyMode(

 [in] const VARIANT_BOOL newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

True to enable proxy mode, false to disable proxy mode.

Return Value

The return value is S_OK.

ICVVideo6::RecordingServerId

The RecordingServerId property specifies the Recording Server GUID to send to the proxy/gateway server if proxy

mode is enabled (i.e. if the ProxyMode property is set to true). This value is required in order to use proxy mode so

that the proxy/gateway server knows where to forward client control messages.

If this property is changed and there is an active connection, then the controller will attempt a reconnection. If the

reconnection attempt fails then double-check the server address and the value of the Recording Server GUID

property (if applicable) or manually reconnect.

Syntax (C++)

HRESULT get_RecordingServerId(

 [out] GUID *result

);

HRESULT put_RecordingServerId(

 [in] const GUID newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

The Recording Server GUID to send to the proxy/gateway server if proxy mode is enabled.

Return Value

The return value is S_OK.

146

ICVVideo6::SetDecodeThreads

Sets the number of threads that will be used when decoding streams. Must set before stream opens to have effect.

Syntax (C++)

HRESULT SetDecodeThreads (

[in] int threads

);

Parameters

threads [in]

Thread count that will be used.

Return Value

The return value is S_OK.

ICVVideo7

Property Description

InvertPan When set to TRUE, pan behavior with the mouse behaves opposite from default.

InvertTilt When set to TRUE, tilt behavior with the mouse behaves opposite from default.

ICVVideo7::InvertPan

The InvertPan property determines whether or to invert the pan behavior when using the mouse to pan the

camera. Set to true to invert the behavior. Set to false to keep standard behavior. By default, this property is set to

false.

Syntax (C++)

HRESULT get_InvertPan(

 [out] VARIANT_BOOL *result

);

HRESULT put_InvertPan(

 [in] const VARIANT_BOOL newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

True to invert pan behavior with the mouse, false to use default behavior.

Return Value

The return value is S_OK.

ICVVideo7::InvertTilt

The InvertTilt property determines whether or invert the tilt behavior when using the mouse to tilt the camera. Set

to true to invert the behavior. Set to false to keep standard behavior. By default, this property is set to false.

147

Syntax (C++)

HRESULT get_InvertTilt(

 [out] VARIANT_BOOL *result

);

HRESULT put_ InvertTilt (

 [in] const VARIANT_BOOL newVal

);

Parameters

result [out]

Receives the current value of the property.

newVal [in]

True to invert tilt behavior with the mouse, false to use default behavior.

Return Value

The return value is S_OK.

_ICVVideoEvents

Client application developers should implement this interface if it is desirable to receive asynchronous notifications

from a CVVideo control.

_ICVVideoEvents has methods summarized in the next table and described in the text that follows.

Method Description

OnConnected Called when a connection to a camera is established.

OnExportProgress Called to convey progress during export.

OnFailedConnection Called when a connection attempt ends in failure.

OnLostConnection Called when an established connection is lost.

OnMouseDblClk Called when a mouse double click occurs in the control.

OnMouseDown Called when a mouse button is depressed in the control.

OnMouseMove Called when a mouse button is moved within the control.

OnMouseUp Called when a mouse button is released in the control.

OnExportStatus Called when export video functionality needs to convey error, warning or
success regarding the export operation.

OnPlaybackStreamEnd Called when an end of playback stream is reached.

OnCameraStatusChanged Called by a CVVideo control when there is a change in camera status

OnPresetNameListChange Called when the preset list for this camera has been updated.

OnQuickTrackStatus Called when some indication regarding the ongoing quick track operations
needs to be notified.

OnThumbnailSearchResult Called when resultant thumbnail for a search operation is available.

OnLocalRecordingCompleted Called when recording is finished.

For all of these methods, the return value is ignored by the CVVideo control.

_ICVVideoEvents::OnConnected

The OnConnected method is called by a CVVideo control when it successfully connects to a camera.

148

Syntax (C++)

HRESULT OnConnected(

);

Parameters

The OnConnected method has no parameters.

_ICVVideoEvents::OnExportProgress

The OnExportProgress is called periodically by a CVVideo control while performing an export operation via

ExportClip, ExportWizard or SilentExport.

Syntax (C++)

HRESULT OnExportProgress(

 [in] ULONG ExportID,

 [in] DATE Pos

);

Parameters

ExportID [in]

Unused.

Pos [in]

The timestamp of the most recently exported video sample. This value is guaranteed to be greater than the

start timestamp of the interval being exported and less than or equal to the end timestamp of that interval,

and to increase (though not strictly) across subsequent calls to this method.

_ICVVideoEvents::OnFailedConnection

The OnFailedConnection method is called by a CVVideo control when a connection attempt fails.

Syntax (C++)

HRESULT OnFailedConnection(

 [in] LONG Reason

);

Parameters

Reason [in]

An internal implementation-defined error code.

_ICVVideoEvents::OnLostConnection

The OnLostConnection method is called by a CVVideo control when it loses the current camera connection.

Syntax (C++)

HRESULT OnLostConnection(

);

Parameters

The OnLostConnection method has no parameters.

_ICVVideoEvents::OnMouseDblClk

The OnMouseDblClk method is called by a CVVideo control when the user double clicks on the control.

149

Syntax (C++)

HRESULT OnMouseDblClk(

 [in] MouseButtons Button

);

Parameters

Button [in]

Indicates which mouse button was double clicked. See MouseButtons.

_ICVVideoEvents::OnMouseDown

The OnMouseDown method is called by a CVVideo control when the user depresses a mouse button while the

mouse is over the control.

Syntax (C++)

HRESULT OnMouseDown(

 [in] MouseButtons Button

);

Parameters

Button [in]

Indicates which mouse button was pressed. See MouseButtons.

_ICVVideoEvents::OnMouseMove

The OnMouseMove method is called by a CVVideo control when the user moves the mouse over the control.

Syntax (C++)

HRESULT OnMouseMove(

 [in] SHORT X,

 [in] SHORT Y

);

Parameters

X [in]

Mouse X coordinate relative to the left of the control.

Y [in]

Mouse Y coordinate relative to the top edge of the control.

_ICVVideoEvents::OnMouseUp

The OnMouseUp method is called by a CVVideo control when the user releases a mouse button while the mouse is

over the control.

Syntax (C++)

HRESULT OnMouseUp(

 [in] MouseButtons Button

);

150

Parameters

Button [in]

Indicates which mouse button was released. See MouseButtons.

_ICVVideoEvents:: OnExportStatus

The OnExportStatus method is called by a CVVideo control when export video functionality needs to convey error,

warning or success regarding the export operation.

Syntax (C++)

HRESULT OnExportStatus (

 [in] ULONG exportId,

 [in] enum ExportStatus exportStatus,

 [in] BSTR error

);

Parameters

exportId [in]

Id of export operation.

exportStatus [in]

 Value of enumeration for export status.

Error [in]

 Error description if any.

_ICVVideoEvents:: OnPlaybackStreamEnd

The OnPlaybackStreamEnd method is called by a CVVideo control when the end of the playback stream is reached.

Syntax (C++)

HRESULT OnPlaybackStreamEnd (

 [in] DATE Position

);

Parameters

Position [in]

Date time of the end of playback stream.

_ICVVideoEvents:: OnCameraStatusChanged

The OnCameraStatusChanged method is called by a CVVideo control when there is a change in camera status

Syntax (C++)

HRESULT OnCameraStatusChanged (

 [in] INT CameraStatus

);

Parameters

CameraStatus [in]

Status mask of the camera, see StatusMaskList table.

151

_ICVVideoEvents:: OnPresetNameListChange

The OnPresetNameListChange method is called by a CVVideo control when the preset list for this camera has been

updated.

Syntax (C++)

HRESULT OnPresetNameListChange (

 [in] VARIANT PresetNameList

);

Parameters

PresetNameList [in]

List of preset names (string).

_ICVVideoEvents:: OnQuickTrackStatus

The OnQuickTrackStatus method is called by a CVVideo control when some indication regarding the ongoing quick

track operations needs to be notified.

Syntax (C++)

HRESULT OnQuickTrackStatus (

 [in] VARIANT_BOOL Success,

 [in] BSTR Error

);

Parameters

Success [in]

VARIANT_TRUE is Quick Track operation has been successful.

Error [in]

 Error description is any.

_ICVVideoEvents:: OnThumbnailSearchResult

The OnThumbnailSearchResult method is called by a CVVideo control when resultant thumbnail for a search

operation is available

Syntax (C++)

HRESULT OnThumbnailSearchResult (

 [in] DATE ThumbnailStart,

 [in] DATE ThumbnailEnd,

 [in] VARIANT Thumbnail,

 [in] VARIANT_BOOL isLast,

 [in] BSTR error

);

Parameters

ThumbnailStart [in]

Start time for this thumbnail.

ThumbnailEnd [in]

 End time for this thumbnail.

152

Thumbnail [in]

 Actual thumbnail is JPEG format.

isLast [in]

 VARIANT_TRUE if this is the last thumbnail in the search results.

error [in]

 Error description if any.

_ICVVideoEvents:: OnLocalRecordingCompleted

The OnLocalRecordingCompleted method is called by a CVVideo control to notify local recording operation is

completed.

Syntax (C++)

HRESULT OnLocalRecordingCompleted (

);

Parameters

The OnLocalRecordingCompleted method has no parameters.

CVCientControl API Enumerations

MouseButtons

The MouseButtons enumeration defines the mouse button types.

Syntax (C++)

enum MouseButtons {

 CVV_MB_LEFT = 1<<0,

 CVV_MB_RIGHT = 1<<1,

};

Remarks

CVV_MB_LEFT represents the left mouse button, CVV_MB_RIGHT the right mouse button.

ViewOptions

The ViewOptions enumeration defines the different viewing types.

Syntax (C++)

enum ViewOptions {

 VIEW_STRETCH_TO_FIT = 0,

 VIEW_LETTERBOX,

};

Remarks

VIEW_STRETCH_TO_FIT causes the video to stretch to fill the viewing area. VIEW_LETTERBOX maintains the

source video aspect ratio, introducing horizontal or vertical black bars if necessary.

TimeZoneType

The TimeZoneType enumeration represents the time zone of a playback request.

153

Syntax (C++)

enum TimeZoneType {

 TIMEZONE_UNSPECIFIED = 0,

 TIMEZONE_SERVER,

 TIMEZONE_CAMERA,

 TIMEZONE_LOCAL,

 TIMEZONE_UTC,

};

Remarks

Each of the above enumerations represents the originating time zone of the start and end times of a playback

request. TIMEZONE_UNSPECIFIED represents the default time zone which is the server’s local time.

ConnectResults

The ConnectResult enumeration defines the possible outcomes of a synchronous connection test (see ConnectSync

and ConnectSyncResult).

Syntax (C++)

enum ConnectResults {

 CR_S_OK = 0,

 CR_S_INCOMPLETE = 1,

 CR_F_UNSPECIFIED = 1000,

 CR_F_UNSUPPORTED = 1001,

 CR_F_VIDEO = 1002,

 CR_F_CAMERA = 1003,

 CR_F_ACCESS = 1004,

 CR_F_USER = 1005,

 CR_F_PASSWORD = 1006,

 CR_F_SERVER = 1007,

 CR_F_LOGIN = 1008,

 CR_F_PLAYBACK = 1009,

 CR_F_ARGUMENT = 1010,

 CR_F_DSHOW = 1011,

 CR_F_COMM = 1012,

 CR_F_WINERR = 1013,

 CR_F_FILE = 1014,

 CR_F_NOTCONN = 1015,

 CR_F_NOTSUPP = 1016,

 CR_F_LOGINERROR = 1017,

 CR_F_LDAP = 1018,

 CR_F_LDAP_SERVER = 1019,

 CR_F_LDAP_AUTH = 1020,

 CR_F_ABORT = 1021,

 CR_F_NOPREVIEW = 1022,

};

154

Remarks

The result codes in this enumeration are general CompleteView result codes, and not all of them are applicable to

synchronous connection tests. Those that are relevant are shown in maroon above and are briefly described in

the following table.

CR_S_OK Success.

CR_F_UNSPECIFIED Unspecified error.

CR_F_ACCESS Access restriction.

CR_F_USER Unknown user.

CR_F_PASSWORD Incorrect password.

CR_F_SERVER Could not connect to server.

CR_F_LOGINERROR Login error.

CR_F_LDAP LDAP error.

CR_F_LDAP_SERVER Cannot contact the LDAP server.

CR_F_ABORT Operation aborted.

DewarpLensType

The DewarpLensType enumeration represents the vendor of the fisheye lens.

Syntax (C++)

enum DewarpLensType

{

 LENS_STANDARD = 0, // Not fisheye

 LENS_IMMERVISION = 1,

 LENS_VIVOTEK = 2,

 LENS_SAMSUNG = 3,

 LENS_SENTRY360 = 4,

 LENS_ACTI = 5,

 LENS_AXIS = 6,

 LENS_ONCAM = 7,

 LENS_HIKVISION = 8,

 LENS_BOSCH = 9,

 LENS_TYPE_END = 10

};

ImmerVisionLensProfile

The ImmerVisionLensProfile enumeration represents the profile of the Immervision lens.

Syntax (C++)

enum ImmerVisionLensProfile

{

 IVLP_NONE = 0,

 IVLP_A0 = 1, ///< A0**V

 IVLP_A1 = 2, ///< A1UST

 IVLP_A8 = 3, ///< A8TRT

 IVLP_BO = 4, ///< BOQQV

 IVLP_B4 = 5, ///< B4QQV

 IVLP_B5 = 6, ///< B5SST

155

 IVLP_B6 = 7, ///< B6SST

 IVLP_B8 = 8, ///< B8QQT

 IVLP_B7 = 9, ///< B72YV

 IVLP_B9 = 10, ///< B9VVT

 IVLP_C1 = 11, ///< C1ZZV

 IVLP_C3 = 12, ///< C322V

 IVLP_C4 = 13, ///< C4VVV

 IVLP_C7 = 14, ///< C7SST

 IVLP_C8 = 15, ///< C8WWT

 IVLP_C9 = 16, ///< C9VVT

 IVLP_C2 = 17, ///< C2TTV

 IVLP_D1 = 18, ///< D1SST

 IVLP_D4 = 19, ///< D4SST

 IVLP_D9 = 20, ///< D9SSV

 IVLP_END = 21

};

DewarpViewType

The DewarpViewType enumeration represents the type of the dewarped view.

Syntax (C++)

enum DewarpViewType

{

 DVT_NONE = 0,

 DVT_RECT = 1, // Rectangular or PTZ view

 DVT_QUAD = 2, // Quad view

 DVT_PANODUAL = 3,// Dual Panorama

 DVT_PANOFULL = 4,// Full Panorama

 DVT_PANOCLIP = 5,// Clip Panorama (Only supported by Vivotek 1080p mode)

 DVT_360 = 6,// 360 fisheye view

 DVT_360_3RECT = 7,//Quad view with 360 fisheye view plus 3 rectangular views

 DVT_PANOFULL_2RECT = 8,// Full panorama with 2 rectangular views

 DVT_360_RECT = 9,// Single view with 360 overlay

 DVT_PANONARROW = 10,

 DVT_VERTICALSELFIE = 11, // Vertical selfie mode

};

DewarpLensOrientation

The DewarpLensOrientation enumeration represents the orientation of fisheye lens.

Syntax (C++)

enum DewarpLensOrientation

{

 DLO_NONE = 0,

 DLO_CEILING = 1,

 DLO_WALL = 2,

 DLO_GROUND = 3,

 DLO_END = 4

};

156

ExportStatus

The ExportStatus enumeration represents the exported video status.

Syntax (C++)

enum ExportStatus

{

 ExportDone = 0,

 ExportWarning,

 ExportError

};

CompressionType

The CompressionType enumeration represents the type of video compression.

Syntax (C++)

enum CompressionType

{

 None = -1,

 Mjpeg = 0,

 Mpeg4 = 1,

 H264 = 2,

 H263 = 3,

 H265 = 4

};

VideoOverlay

The VideoOverlay enumeration defines the available video overlay types.

Syntax (C++)

enum VideoOverlay {

 OverlayNone = -1,

 OverlayCameraName = 0,

 OverlayTimestamp = 1,

 OverlayStreamProperties = 2,

 OverlayUser = 4,

 OverlayCount = 6

};

VideoOverlayPosition

The VideoOverlayPosition enumeration defines the available video overlay screen positions.

Syntax (C++)

enum VideoOverlayPosition {

PositionNone = -1,

 PositionCenter = 0,

157

 PositionTopLeft = 1,

 PositionTopRight = 2,

 PositionBottomLeft = 3,

 PositionBottomRight = 4

};

Transcoder

The Transcoder enumeration defines the available decoder options for H.264 and MPEG4 streams.

Syntax (C++)

enum Transcoder {

 TranscoderNone = -1,

 TranscoderIpp = 0,

 TranscoderFfmpeg = 1

};

VideoRendererOption

The VideoRendererOption enumeration defines the available decoder options for H.264 and MPEG4 streams.

Syntax (C++)

enum VideoRendererOption{

 RendererGdi = 0,

 RendererDirect2D = 1

};

CVClientControl API Structures

DewarpOptions

The DewarpOptions structure represents the options needed by video renderer for dewarping live or recorded

video.

Syntax (C++)

struct DewarpOptions

{

 enum DewarpLensOrientation lensOrientation;

 enum ImmerVisionLensProfile lensProfile;

 enum DewarpLensType lensType;

 INT centerX;

 INT centerY;

 INT radius;

 VARIANT lensCurveData;

};

Parameters

lensOrientation

Orientation of the lens, see DewarpLensOrientation enumeration.

158

lensProfile

Lens profile specific to Immervision type lenses, see ImmerVisionLensProfile enumeration.

lensType

Dewarp lens type, see DewarpLensType enumeration.

centerX

X coordinate of the center.

centerY

Y coordinate of the center.

radius

Radius of the fisheye camera.

lensCurveData

Lens curve data, byte array.

LocalRecordingArgs

The LocalRecordingArgs structure represents the options needed for StartLocalRecording() API to record video.

Syntax (C++)

struct LocalRecordingArgs

{

 BSTR userFilePath ;

 DOUBLE userFps ;

 Enum CompressionType userCompressionType ;

 INT userWidth ;

 INT userHeight ;

 UINT64 userDurationToRecord ;

 BSTR userFileName ;

 Enum VideoOverlayPosition userOverlayPosition ;

};

Parameters

userFilePath (required)

Destination to store recorded AVI clip.

userFps (optional)

Frame-Rate per second at which to record clip.

userCompressionType (optional)

Compression type of recorded clip. See CompressionType enumeration.

userWidth (optional)

Width of recorded clip.

159

userHeight (optional)

Height of recorded clip.

userDurationToRecord (optional)

Specific duration to record clip in seconds.

userFilename (optional)

File Name for recorded clip.

userOverlayPosition (optional)

See VideoOverlayPosition enumeration.

Note – When this option is specified by user, it is recommended to disable server-side overlays.

160

Additional Resources
Visit the Salient website, www.salientsys.com, for additional support and CompleteView training:

• Manuals & Documentation (https://support.salientsys.com/hc/en-us/categories/115000292747-
Knowledge-Base) – Includes Administrator’s Manual, Client User Manuals (including Video, Alarm and
Web clients), How To Guides and Tips.

• Online Tech Support (https://support.salientsys.com/hc/en-us)– Get quick access to online tech support
modules that cover the most frequently asked product questions, such as “Adding and Moving IP Camera
Licenses.”

• Training (https://support.salientsys.com/hc/en-us/categories/115000302988-Training)– we offer both
online and classroom training.

o CompleteView™ Online Certification - Register online for access to interactive training modules
covering the Video, Alarm, Mapping and Web clients.

o CompleteView™ Classroom Certification - Our traditional classroom training is available
throughout the United States. Please visit the Salient website for link to online training, training
calendar, agenda and registration.

Salient Systems
4616 W. Howard Ln.
Building 1, Suite 100
Austin, TX 78728
512.617.4800
512.617.4801 Fax
www.salientsys.com

©2020 Salient Systems Corporation. Company and product names mentioned are registered trademarks of their

respective owners.

http://www.salientsys.com/
https://support.salientsys.com/hc/en-us/categories/115000292747-Knowledge-Base
https://support.salientsys.com/hc/en-us/categories/115000292747-Knowledge-Base
https://support.salientsys.com/hc/en-us
https://support.salientsys.com/hc/en-us/categories/115000302988-Training
http://www.salientsys.com/
http://twitter.com/salientsys
http://www.linkedin.com/company/salient-systems
http://www.youtube.com/salientsystems
http://www.salientsys.com/index.php/blog/rss_2.0

